描述
南阳理工学院要进行用电线路改造,现在校长要求设计师设计出一种布线方式,该布线方式需要满足以下条件:
1、把所有的楼都供上电。
2、所用电线花费最少
输入
第一行是一个整数n表示有n组测试数据。(n<5)
每组测试数据的第一行是两个整数v,e.
v表示学校里楼的总个数(v<=500)
随后的e行里,每行有三个整数a,b,c表示a与b之间如果建铺设线路花费为c(c<=100)。(哪两栋楼间如果没有指明花费,则表示这两栋楼直接连通需要费用太大或者不可能连通)
随后的1行里,有v个整数,其中第i个数表示从第i号楼接线到外界供电设施所需要的费用。( 0<e<v*(v-1)/2 )
(楼的编号从1开始),由于安全问题,只能选择一个楼连接到外界供电设备。
数据保证至少存在一种方案满足要求。
输出
每组测试数据输出一个正整数,表示铺设满足校长要求的线路的最小花费。
样例输入
1
4 6
1 2 10
2 3 10
3 1 10
1 4 1
2 4 1
3 4 1
1 3 5 6
样例输出
4
代码:
#include <iostream>
#include <string>
#include <algorithm>
#include <iomanip>
#include <cstring>
#include <stdio.h>
#define inf 1000000
using namespace std;
int a[505][505];
int b[300005];
struct dot
{
int x,y,step;
}G[300000];
int cmp(dot a1,dot a2)
{return a1.step<a2.step;}
int find(int z)
{
while(z!=b[z]) z=b[z];
return z;
}
int build(int ax,int ay)
{
int i=find(ax);
int j=find(ay);
if(i==j) return 0;
else
b[i]=j;
return 1;
}
int main()
{
int T,i,j,k,v,e,p,q,money;int kk[505];
cin>>T;
while(T--)
{
cin>>v>>e;
for(i=0;i<=v;i++)
for(j=0;j<=v;j++)
{
if(i==j) a[i][j]=0;
else a[i][j]=inf;
}
for(i=0;i<e;i++)
{
cin>>p>>q>>money;
if(a[p][q]>money)
a[p][q]=a[q][p]=money;
}
for(i=1;i<=v;i++)scanf("%d",&kk[i]);
k=1;
for(i=1;i<=v;i++)
{
for(j=1;j<=v;j++)
{
G[k].x=i;
G[k].y=j;
G[k].step=a[i][j];
b[k]=k;
k++;
}
}
sort(kk+1,kk+v+1);
sort(G+1,G+k+1,cmp);
int sum=0;
for(i=1;i<k;i++)
{
if(build(G[i].x,G[i].y))
{
sum+=G[i].step;
}
}
cout<<sum+kk[1]<<endl;
}
return 0;
}