布线问题


描述
南阳理工学院要进行用电线路改造,现在校长要求设计师设计出一种布线方式,该布线方式需要满足以下条件:
1、把所有的楼都供上电。
2、所用电线花费最少
输入
第一行是一个整数n表示有n组测试数据。(n<5)
每组测试数据的第一行是两个整数v,e.
v表示学校里楼的总个数(v<=500)
随后的e行里,每行有三个整数a,b,c表示a与b之间如果建铺设线路花费为c(c<=100)。(哪两栋楼间如果没有指明花费,则表示这两栋楼直接连通需要费用太大或者不可能连通)
随后的1行里,有v个整数,其中第i个数表示从第i号楼接线到外界供电设施所需要的费用。( 0<e<v*(v-1)/2 )
(楼的编号从1开始),由于安全问题,只能选择一个楼连接到外界供电设备。
数据保证至少存在一种方案满足要求。
输出
每组测试数据输出一个正整数,表示铺设满足校长要求的线路的最小花费。
样例输入
1
4 6
1 2 10
2 3 10
3 1 10
1 4 1
2 4 1
3 4 1
1 3 5 6
样例输出
4

代码:

#include <iostream>
  #include <string>
  #include <algorithm>
  #include <iomanip>
  #include <cstring>
  #include <stdio.h>
  #define inf 1000000 
  using namespace std;
  int a[505][505];
  int b[300005];
  
  struct dot
  {
  	  int x,y,step;
  }G[300000];
  int cmp(dot a1,dot a2)
  {return a1.step<a2.step;}
  int find(int z)
  {
  	while(z!=b[z]) z=b[z];
	return z; 
  }
  int build(int ax,int ay)
  {
  	int i=find(ax);
  	int j=find(ay);
  	if(i==j) return 0;
  	else 
  		b[i]=j;
	return 1;
  }
  int main()
  {
  	int T,i,j,k,v,e,p,q,money;int kk[505];
  	cin>>T;
  	while(T--)
  	{
	    cin>>v>>e;
  		for(i=0;i<=v;i++)
		  for(j=0;j<=v;j++)
		  {
		  	if(i==j) a[i][j]=0;
		  	else a[i][j]=inf;
		  } 
  		
  		for(i=0;i<e;i++)
  		{
  			cin>>p>>q>>money;
  			if(a[p][q]>money)
  			a[p][q]=a[q][p]=money;
		}
		for(i=1;i<=v;i++)scanf("%d",&kk[i]);
		k=1;
		for(i=1;i<=v;i++)
		{
			for(j=1;j<=v;j++)
			{
				G[k].x=i;
				G[k].y=j;
				G[k].step=a[i][j];
				b[k]=k;
				k++;
			} 
		}
		sort(kk+1,kk+v+1);
		sort(G+1,G+k+1,cmp);
		int sum=0;
		for(i=1;i<k;i++)
		{
			if(build(G[i].x,G[i].y))
			{
				sum+=G[i].step;
			}
		}
		cout<<sum+kk[1]<<endl; 
	}
	return 0;
  }


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值