算法:动态规划
描述
咱们就不拐弯抹角了,如题,需要你做的就是写一个程序,得出最长公共子序列。
tip:最长公共子序列也称作最长公共子串(不要求连续),英文缩写为LCS(Longest Common Subsequence)。其定义是,一个序列 S ,如果分别是两个或多个已知序列的子序列,且是所有符合此条件序列中最长的,则 S 称为已知序列的最长公共子序列。
输入
第一行给出一个整数N(0<N<100)表示待测数据组数
接下来每组数据两行,分别为待测的两组字符串。每个字符串长度不大于1000.
输出
每组测试数据输出一个整数,表示最长公共子序列长度。每组结果占一行。
样例输入
2
asdf
adfsd
123abc
abc123abc
样例输出
3
6
来源
经典
上传者
hzyqazasdf
代码:
/*最长公共子序列
#include <cstring>
#include <iostream>
#include <iomanip>
#include <string>
#include <algorithm>
#include <cmath>
using namespace std;
int dp[1005][1005];
int main()
{
int n,m,i,j,k;
string s,t;
cin>>n;
while(n--)
{
cin>>s>>t;
memset(dp,0,sizeof(dp));
for(i=0;i<s.size();i++)
{
for(j=0;j<t.size();j++)
{
if(s[i]==t[j])
dp[i+1][j+1]=dp[i][j]+1;
else
dp[i+1][j+1]=max(dp[i+1][j],dp[i][j+1]);
}
}
cout<<dp[s.size()][t.size()]<<endl;
}
return 0;
}
*/