YOLO(You Only Look Once)是一个广泛使用的实时目标检测算法,其不同版本在架构、精度和速度等方面都有显著的改进和优化。以下是YOLO各版本的对比:
YOLO v1 (2016)
架构和方法:
- 将输入图像分成 S×S 的网格,每个网格预测固定数量的边界框和类别概率。
- 使用单个卷积神经网络同时进行边界框预测和分类。
- 损失函数包含分类损失、定位损失和置信度损失。
YOLO v1 中的损失函数-CSDN博客 通过默认值设置不同损失之间的权重
优点:
- 单阶段检测器,速度快,能够实现实时检测。
- 简单易用,易于训练和部署。
缺点:
- 精度不高,尤其在处理小物体和复杂背景时表现较差。
- 每个网格只能预测一个类别,限制了检测复杂场景的能力。
YOLO v2 (YOLO9000, 2017)
改进点:
- 使用了Batch Normalization提高训练稳定性和模型性能。
- 引入了高分辨率分类预训练。
- 使用了多尺度训练,提高了检测不同尺寸物体的能力。
- 使用了Anchor Boxes,类似于Faster R-CNN,改进了边界框预测。
- 通过联合训练检测和分类任务,提出了YOLO9000,能够同时检测9000类物体。
优点:
- 精度显著提高,尤其在小物体检测和复杂场景中表现更好。
- 保持了实时检测的速度优势。
缺点:
- 相比于YOLO v1,模型复杂度和训练难度有所增加。
YOLO v3 (2018)
改进点:
- 使用了Darknet-53作为基础网络