YOLO 各版本对比

YOLO(You Only Look Once)是一个广泛使用的实时目标检测算法,其不同版本在架构、精度和速度等方面都有显著的改进和优化。以下是YOLO各版本的对比:

YOLO v1 (2016)

架构和方法

  • 将输入图像分成 S×S 的网格,每个网格预测固定数量的边界框和类别概率。
  • 使用单个卷积神经网络同时进行边界框预测和分类。
  • 损失函数包含分类损失、定位损失和置信度损失。

YOLO v1 中的损失函数-CSDN博客  通过默认值设置不同损失之间的权重

目标检测模型YOLO-V1损失函数详解-CSDN博客

优点

  • 单阶段检测器,速度快,能够实现实时检测。
  • 简单易用,易于训练和部署。

缺点

  • 精度不高,尤其在处理小物体和复杂背景时表现较差。
  • 每个网格只能预测一个类别,限制了检测复杂场景的能力。

YOLO v2 (YOLO9000, 2017)

改进点

  • 使用了Batch Normalization提高训练稳定性和模型性能。
  • 引入了高分辨率分类预训练。
  • 使用了多尺度训练,提高了检测不同尺寸物体的能力。
  • 使用了Anchor Boxes,类似于Faster R-CNN,改进了边界框预测。
  • 通过联合训练检测和分类任务,提出了YOLO9000,能够同时检测9000类物体。

优点

  • 精度显著提高,尤其在小物体检测和复杂场景中表现更好。
  • 保持了实时检测的速度优势。

缺点

  • 相比于YOLO v1,模型复杂度和训练难度有所增加。

YOLO v3 (2018)

改进点

  • 使用了Darknet-53作为基础网络
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

QianMo-WXJ

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值