tensorflow中部分函数

  • tf.tile() 函数

    tensorflow中的tile()函数是用来对张量(Tensor)进行扩展的,其特点是对当前张量内的数据进行一定规则的复制。最终的输出张量维度不变。  
    • 函数定义:
      tf.tile(
          input,
          multiples,
          name=None
      )

      input是待扩展的张量,multiples是扩展方法。
      假如input是一个3维的张量。那么mutiples就必须是一个1x3的1维张量。这个张量的三个值依次表示input的第1,第2,第3维数据扩展几倍。

    • 例子: 参考 https://blog.csdn.net/tsyccnh/article/details/82459859

    • import tensorflow as tf
      
      a = tf.constant([[1, 2], [3, 4], [5, 6]], dtype=tf.float32)
      a1 = tf.tile(a, [2, 3])
      
      with tf.Session() as sess:
          print(sess.run(a))
          print(sess.run(tf.shape(a)))
          print(sess.run(a1))
          print(sess.run(tf.shape(a1)))
      
      
      [[1. 2.]
       [3. 4.]
       [5. 6.]]
      [3 2]
      [[1. 2. 1. 2. 1. 2.]
       [3. 4. 3. 4. 3. 4.]
       [5. 6. 5. 6. 5. 6.]
       [1. 2. 1. 2. 1. 2.]
       [3. 4. 3. 4. 3. 4.]
       [5. 6. 5. 6. 5. 6.]]
      [6 6]

       

  • tf.expand_dims()函数

    tf.expand_dims()函数用于给函数增加维度。
    • 定义:
      tf.expand_dims(
          input,
          axis=None,
          name=None,
          dim=None
      )

      参数:

      • input是输入张量。

      • axis是指定扩大输入张量形状的维度索引值。

      • dim等同于轴,一般不推荐使用。

    • 函数的功能是在给定一个input时,在axis轴处给input增加一个维度。

    • 示例  https://blog.csdn.net/TeFuirnever/article/details/8879781

      • import tensorflow as tf
        import numpy as np
        
        # 't2' is a tensor of shape [2, 3, 5]
        t2 = np.zeros((2,3,5))
        print(t2.shape)
        t3 = tf.expand_dims(t2, 0)
        t4 = tf.expand_dims(t2, 2)
        t5 = tf.expand_dims(t2, 3)
        print(t3.shape)
        print(t4.shape)
        print(t5.shape)
        
        > (2, 3, 5)
        > (1, 2, 3, 5)
        > (2, 3, 1, 5)
        > (2, 3, 5, 1)

         

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值