-
tf.tile() 函数
tensorflow中的tile()函数是用来对张量(Tensor)进行扩展的,其特点是对当前张量内的数据进行一定规则的复制。最终的输出张量维度不变。- 函数定义:
tf.tile( input, multiples, name=None )
input是待扩展的张量,multiples是扩展方法。
假如input是一个3维的张量。那么mutiples就必须是一个1x3的1维张量。这个张量的三个值依次表示input的第1,第2,第3维数据扩展几倍。 -
例子: 参考 https://blog.csdn.net/tsyccnh/article/details/82459859
-
import tensorflow as tf a = tf.constant([[1, 2], [3, 4], [5, 6]], dtype=tf.float32) a1 = tf.tile(a, [2, 3]) with tf.Session() as sess: print(sess.run(a)) print(sess.run(tf.shape(a))) print(sess.run(a1)) print(sess.run(tf.shape(a1))) [[1. 2.] [3. 4.] [5. 6.]] [3 2] [[1. 2. 1. 2. 1. 2.] [3. 4. 3. 4. 3. 4.] [5. 6. 5. 6. 5. 6.] [1. 2. 1. 2. 1. 2.] [3. 4. 3. 4. 3. 4.] [5. 6. 5. 6. 5. 6.]] [6 6]
- 函数定义:
-
tf.expand_dims()函数
tf.expand_dims()函数用于给函数增加维度。- 定义:
tf.expand_dims( input, axis=None, name=None, dim=None )
参数:
-
input是输入张量。
-
axis是指定扩大输入张量形状的维度索引值。
-
dim等同于轴,一般不推荐使用。
-
-
函数的功能是在给定一个input时,在axis轴处给input增加一个维度。
-
示例 https://blog.csdn.net/TeFuirnever/article/details/8879781
-
import tensorflow as tf import numpy as np # 't2' is a tensor of shape [2, 3, 5] t2 = np.zeros((2,3,5)) print(t2.shape) t3 = tf.expand_dims(t2, 0) t4 = tf.expand_dims(t2, 2) t5 = tf.expand_dims(t2, 3) print(t3.shape) print(t4.shape) print(t5.shape) > (2, 3, 5) > (1, 2, 3, 5) > (2, 3, 1, 5) > (2, 3, 5, 1)
-
- 定义:
03-28
636
09-22