机器学习之支持向量机(SVM)

本文详细介绍了支持向量机(SVM),一种用于二分类的机器学习模型。内容包括SVM的基本思想、结构风险的概念、间隔最大化的目标、对偶问题的解决以及核函数在处理线性不可分问题中的作用。通过核函数,SVM能够在高维空间实现线性可分,解决了实际问题中的非线性分类挑战。

SVM

SVM 即支持向量机,常用于二分类模型。它主要的思想是:
1. 它是特征空间上间隔最大的线性分类器。
2. 对于线性不可分的情况,通过非线性映射算法将低维空间的线性不可分的样本映射到高维特征空间,高维特征空间能够进行线性分析。

结构风险

对于指定的损失函数,根据一定的样本集就能根据这些样本来计算经验风险,而经验风险最小化就是根据样本集来最小化经验风险。

假如我们能获取到所有数据,那么我们希望整个数据集的损失能越小越好,这就表示模型越好。但很多时候基本不可能获取到所有数据,这时就可以根据样本的联合分布P(X,Y)来计算期望风险:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

超人汪小建(seaboat)

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值