SVM
SVM 即支持向量机,常用于二分类模型。它主要的思想是:
1. 它是特征空间上间隔最大的线性分类器。
2. 对于线性不可分的情况,通过非线性映射算法将低维空间的线性不可分的样本映射到高维特征空间,高维特征空间能够进行线性分析。
结构风险
对于指定的损失函数,根据一定的样本集就能根据这些样本来计算经验风险,而经验风险最小化就是根据样本集来最小化经验风险。
假如我们能获取到所有数据,那么我们希望整个数据集的损失能越小越好,这就表示模型越好。但很多时候基本不可能获取到所有数据,这时就可以根据样本的联合分布P(X,Y)来计算期望风险: