【机器学习】支持向量机SVM-详解

支持向量机

学习目标:

1.理解SVM算法的思想

2.知道SVM中的硬间隔

3.理解SVM中的软间隔和惩罚系数

4.知道SVM中核函数的作用

【了解】小故事

在很久以前的情人节,大侠要去救他的爱人,但魔鬼和他玩了一个游戏。

魔鬼在桌子上似乎有规律放了两种颜色的球,说:

“你用一根棍分开它们?要求:尽量在放更多球之后,仍然适用。”

于是大侠这样放,干的不错?

然后魔鬼,又在桌上放了更多的球,似乎有一个球站错了阵营。

怎么办??

把分解的小棍儿变粗。

SVM就是试图把棍放在最佳位置,好让在棍的两边有尽可能大的间隙。

现在即使魔鬼放了更多的球,棍仍然是一个好的分界线。

然后,在SVM 工具箱中有另一个更加重要的技巧( trick)。 魔鬼看到大侠已经学会了一个trick,于是魔鬼给了大侠一个新的挑战。

现在,大侠没有棍可以很好帮他分开两种球了,现在怎么办呢?

当然像所有武侠片中一样大侠桌子一拍,球飞到空中。然后,凭借大侠的轻功,大侠抓起一张纸,插到了两种球的中间。

现在,从魔鬼的角度看这些球,这些球看起来像是被一条曲线分开了。

再之后,无聊的大人们,把上面的物体起了别名:

球—— 「data」数据

棍子—— 「classifier」分类

最大间隙——「optimization」最优化

拍桌子——「kernelling」核方法

纸——「hyperplane」超平面

案例来源:Support Vector Machines explained well | Byte Size Biology

【理解】SVM的定义

SVM全称是supported vector machine(支持向量机),即寻找到一个超平面使样本分成两类,并且间隔最大。

SVM能够执行线性或非线性分类、回归,甚至是异常值检测任务。是机器学习领域最受欢迎的模型之一。SVM特别适用于中小型复杂数据集的分类。

【理解】超平面最大间隔

上左图显示了三种可能的线性分类器的决策边界:

虚线所代表的模型表现非常糟糕,甚至都无法正确实现分类。其余两个模型在这个训练集上表现堪称完美,但是它们的决策边界与实例过于接近,导致在面对新实例时,表现可能不会太好

右图中的实线代表SVM分类器的决策边界,不仅分离了两个类别,且尽可能远离最近的训练实例

【知道】硬间隔

如果样本线性可分,在所有样本分类都正确的情况下,寻找最大间隔,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值