《大数据机器学习实践探索》 ---- 使用spark MLlib进行机器学习(1.简介 -- 从机器学习说起)


Up until this point, we have focused on data engineering workloads with Apache Spark. Data engineering is often a precursory step to preparing your data for machine learning (ML) tasks, which will be the focus of this chapter. We live in an era in which machine learning and artificial intelligence applications are an integral part of our lives.

Chances are that whether we realize it or not, every day we come into contact with ML models for purposes such as online shopping recommendations and adver‐ tisements, fraud detection, classification, image recognition, pattern matching, and more. These ML models drive important business decisions for many companies. According to this McKinsey study, 35% of what consumers purchase on Amazon and 75% of what they

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

shiter

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值