
AI赋能行业实战:最佳实践与落地案例深度解析!
文章平均质量分 93
AI 相关技术伴随着2006年 计算机算力的膨胀开始,蓬勃发展至今。从传统机器学习到深度学习再到大力出奇迹的预训练模型经历了一轮又一轮的热潮。现代公司制度已有近百年,更是在近年来积累了大量数据。每个企业都将不可避免的面对堆积如山的海量数据,处理并从海量数据中挖掘信息,进行信息化转型,迫在眉睫!
shiter
CSDN博客专家,人工智能与大数据领域优秀创作者,累计近500W人次访问。 熟悉自然语言处理(NLP)、大数据(Spark 、Elasticsearch)、数据分析(Scala,Python),计算机视觉(OpenCV、立体匹配)等领域的研发工作。世界500强,高级算法工程师, 曾参与并负责国家级大数据项目,负责大健康平台相关开发与管理工作,负责金融行业AI与大数据平台产品设计、开发与落地。编程不仅仅是技术,还是艺术!talk is cheap,show me the code!
展开
-
《AI赋能行业实战:揭秘企业数字化转型最佳实践,落地案例深度解析!》 ---- 总目录
文章大纲金融行业 落地实践浅析大健康行业 落地实践浅析传统行业深度融合升级参考文献AI 相关技术伴随着2006年 计算机算力的膨胀开始,蓬勃发展至今。从传统机器学习到深度学习再到大力出奇迹的BERT , GPT 经历了一轮又一轮的热潮。现代公司制度已有近百年,更是在近年来积累了大量数据。每个企业都将不可避免的面对堆积如山的海量数据,如何处理并从海量数据中挖掘信息,进行信息化转型,提升企业战斗力,是含金量极高的一门技艺。大数据技术为AI 技术提供了大量弹药,从上帝视角出发解读世界。本专栏,带你从上帝原创 2021-07-29 00:27:40 · 1230 阅读 · 1 评论 -
人工智能与医疗 总览
在1956年的达特茅斯会议上,人工智能的概念第一次被真正提出来,其作为信息技术的一种,早在40多年前就已经实验性地参与到医疗行为中。1972年,利兹大学研发了医疗领域最早出现的人工智能系统,此系统主要用于腹部剧痛的辅助诊断及手术的相关需求。人工智能作为一种技术,对生产工具进行了升级。人们可以通过人工智能快速地对行业数据和过往知识进行汇总和梳理,从而辅助人们做决策。原创 2021-04-03 14:53:33 · 1904 阅读 · 0 评论 -
《大数据+AI在大健康领域中最佳实践前瞻 》---- 总目录
文章大纲简介简介健康是人类永恒的主题也是社会进步的重要标志,健康已成为新世纪人们生活的基本目标。大健康产业具有巨大的市场潜力,未来在我国经济结构向服务业转型过程中,大健康产业将成为我国国民经济支柱型产业......原创 2021-03-14 00:04:26 · 2161 阅读 · 7 评论 -
对于损耗类设备进行预测性维护(Prognostics and Health Management)的最佳实践:流程与算法
AI-PredictiveMaintenance 项目在制造业中监控生产线上的关键设备,通过对历史传感器数据的学习,模型能识别可能的故障模式,提前通知维修团队。通过合理运用这些技术和资源,可有效实现设备的预测性维护,降低故障风险,提高生产效率和产品质量。预测性维护(Prognostics and Health Management,PHM)通过对设备运行数据的分析,提前预测故障并优化维护计划,广泛应用于各行业,如制造业、能源、交通等。本文将探讨预测性维护的通用方法,助力提升设备管理效率与可靠性。原创 2025-04-27 01:10:16 · 147 阅读 · 0 评论 -
机器学习、深度学习解决方案设计方案通用审核流程(solution architect review)
全面、详细且可操作的机器学习/深度学习项目解决方案审查框架中,该框架将作为代码审查的前置步骤。确保项目在进入代码实现阶段之前,其方向、方法和技术选择是正确、合理和完备的。建议在方案评审会议前至少72小时完成文档预审,并结合检查清单(如Notion、Jira等)进行逐项确认。原创 2025-03-23 23:17:46 · 189 阅读 · 0 评论 -
基于小参数量大语言模型(Small Language Models) ---- 在制造业落地降本增效应用:可行性研究初探
小参数量模型是通过模型压缩技术从大型语言模型中提取知识而构建的轻量级模型。常见的模型压缩方法包括剪枝、量化、低秩分解和知识蒸馏等。这些方法能够有效减少模型的参数数量,提高模型的运行效率,使其更适合在资源受限的环境中部署。领域自适应蒸馏+混合专家架构+极致量化。原创 2025-03-16 20:21:31 · 373 阅读 · 0 评论 -
从0到1构建AI深度学习视频分析系统--基于YOLO 目标检测的动作序列检查系统:(2)消息队列与消息中间件
我还需要一个针对上面原始视频队列的yolo 目标检测结果队列,存放yolo 目标检测的结果,长度为定值,有绘制方法,可以查看检测结果,使用jason 或者protobuf 序列化,请帮忙给出技术选型建议。每隔x 分钟,或者每隔 x 个消息,对 检测结果队列进行消息判断,看看其结果序列是否出发规整中定义的某些规整,如违规或者超时停留等。| 5分钟数据流 | 2-8MB | 15-30MB | 80%↓ |原创 2025-03-15 00:35:36 · 357 阅读 · 0 评论 -
基于ultralytics 的yolov8 yolov11系列模型,绘制 heatmap or attention maps,可视化模型表现
根据特征图或注意力权重,计算每个位置的热度值(通常通过求和、平均或最大池化等方式),然后将这些值映射到颜色空间以生成热力图[:通过热力图,我们可以直观地看到模型在不同层次上学习到的特征表示,有助于理解模型的工作原理和决策过程[:通过将热力图与输入图像相结合,我们可以更好地解释模型的预测结果,增强模型的可解释性和可信度[:热力图可以帮助我们识别模型在哪些区域表现良好,哪些区域存在不足,从而指导模型的调整和优化[:在某些层中,模型可能会应用注意力机制来加权不同位置的特征,从而提高重要特征的表示能力。原创 2025-03-14 10:58:35 · 167 阅读 · 0 评论 -
大语言模型进化论:从达尔文到AI的启示与展望
根据查尔斯·罗伯特·达尔文(Charles Robert Darwin)提出进化论的例子。进化论被誉为19世纪自然科学的三大发现之一。事实上,进化论的思想绝非达尔文的原创,但在该思想出现之前,达尔文一直在思考“到底是什么导致了进化?”这个问题,而且读了很多杂七杂八的书。在读《地质学原理》的时候,他受到启发,原来微小的变异可以逐渐累积成巨大的变化(遗传变异);在读《人口学原理》的时候,他意识到,过度繁殖使得空间、食物等对每一个个体来说变得稀缺,而资源的有限性会加速物种之间的斗争(过度繁殖和生存斗争);原创 2025-03-08 00:51:33 · 325 阅读 · 0 评论 -
从技术角度看大语言模型进化技术路线与落地应用详解:未来的最佳实践方向是什么?
动态稀疏注意力(Sparse Attention)混合专家系统(MoE)状态空间模型(SSM)与Mamba架构参数高效微调(Parameter-Efficient Fine-Tuning, PEFT)强化学习驱动的后训练优化(RLHF+)绿色计算与模型压缩合成数据生成(Synthetic Data Generation)知识图谱增强(Knowledge-Enhanced LLMs)跨模态数据对齐(Cross-Modal Alignment)领域定制化基座模型AI智能体(Agent)系统科学发现引擎(AI f原创 2025-03-07 20:20:43 · 272 阅读 · 0 评论 -
从0到1构建AI深度学习视频分析系统--基于YOLO 目标检测的动作序列检查系统:(1)视频信息的获取与转发
优化,核心组件技术选型,数据采集摄像头,基于windows 或者直接使用usb 摄像机,目标检测使用树莓派 5 + hailo 加速卡的方案,动作 或者 操作序列,融合 有向无环图 任务拆解作为创新点,给出markdown 格式表格 并给出 github 或者优秀 文章、论文 参考 链接。性能基准测试:在Intel i7-12700K + 千兆网络环境下,aiortc方案延迟可达0.2秒,WebSocket+JPEG方案延迟约0.4秒,RTSP方案延迟约1.2秒。Web/Mobile端。原创 2025-03-05 00:17:07 · 227 阅读 · 0 评论 -
从0到1构建AI深度学习视频分析系统--基于YOLO 目标检测的动作序列检查系统:(0)系统设计与工具链说明
摄像头] → 采集 → JPEG编码 → WebSocket分帧 → 传输 → 前端渲染。原创 2025-03-04 00:08:17 · 250 阅读 · 0 评论 -
使用AI 自动化编程IDE Trae 初探!国产就是好,Chat,Build 两大模式助力程序员生产力飙升
简单的使用 github 账户登录_lang=zh。原创 2025-03-03 16:02:22 · 286 阅读 · 0 评论 -
LLM制造业最佳实践:基于大语言模型处理最优化问题,制造业如何更优排产,提升资源利用率
随着制造业数字化转型加速,生产排产优化成为提升企业效率和竞争力的关键环节。大语言模型(LLM)凭借其强大的多模态数据处理、动态优化和智能推理能力,在复杂排产场景中展现出独特优势。谷歌、DeepSeek等机构的研究表明,LLM可通过自然语言交互和生成式决策,突破传统优化算法的局限性。本报告结合半导体行业实践案例与技术路径,系统分析LLM在排产优化中的应用潜力与挑战。原创 2025-03-01 13:12:07 · 185 阅读 · 0 评论 -
LLM制造业最佳实践:加速故障根因分析辅助定位。
本文重点探讨制造业应用其在半导体后道制造工厂内存条生产线的应用。大语言模型在半导体后道制造工厂内存条生产线根因分析中的应用调研报告一、引言在半导体后道制造工厂中,内存条生产线的高效运行对于产品质量和生产效率至关重要。根因分析(Root Cause Analysis,RCA)是识别和解决生产过程中问题的关键技术。近年来,大语言模型(LLM)在多个领域展现出强大的能力,其在根因分析中的应用也逐渐受到关注。本报告旨在调研大语言模型在根因分析中的成功案例和开源工具,并探讨其在内存条生产线中的应用潜力。原创 2025-03-01 12:54:42 · 229 阅读 · 0 评论 -
windows 下 使用Python OpenCV针对 压缩的tiff 图像进行解压缩 并转换成多张jpeg 图像
TIFF(Tagged Image File Format)是一种灵活且可适应的文件格式,广泛用于图像存储。它支持多种颜色空间和压缩算法,适合高质量图像的存储和传输。TIFF 文件可以包含多个图像或图像层,常用于扫描、出版和专业摄影等领域。原创 2025-02-27 16:02:31 · 169 阅读 · 0 评论 -
Transformer 与注意力机制原理说明与面试笔试题
自注意力机制(Self-Attention)是一种在深度学习中广泛应用的技术,尤其是在自然语言处理(NLP)和计算机视觉领域。它允许模型在处理输入序列时,考虑序列中每个元素与其他所有元素之间的关系,从而有效捕捉序列内的复杂依赖关系。基本原理自注意力机制的核心在于通过计算输入序列中每个元素的查询(Query)、键(Key)和值(Value)来建立元素之间的关系。输入转换:输入序列通过线性变换生成查询、键和值向量。相似度计算:通过计算查询向量与所有键向量之间的相似度(通常使用点积或缩放点积),得到注意力权重。原创 2025-01-18 23:52:01 · 343 阅读 · 0 评论 -
超高分辨率 图像 分割处理
SAHI是一个轻量级的视觉库,用于执行大规模的目标检测和实例分割。它通过切片辅助的超推理技术,帮助开发者解决实际应用中检测小目标和在大图像上进行推理的问题。SAHI支持多种深度学习框架,如Ultralytics、MMDetection、Detectron2、HuggingFace和TorchVision等。原创 2025-01-03 22:56:53 · 271 阅读 · 0 评论 -
深度学习应用工程化中的节能减排最佳实践
一、制造业的能耗与排放现状制造业作为经济的支柱产业,对资源的消耗和环境的污染影响巨大。传统制造业以高能耗、高排放为特点,给环境带来了严重影响。随着全球气候变暖问题日益严重,节能减排技术在各个产业领域中的应用变得愈发重要。制造业在能源消耗和碳排放方面占据重要地位,因此推动制造业实施节能减排技术已经成为当前发展的必然选择。中国制造业的能源消耗量占全国总能耗的比重超过60%。其中,钢铁、有色金属、化工等行业的能耗尤为突出。碳排放量高:制造业也是碳排放的主要来源之一。原创 2025-01-03 20:01:16 · 273 阅读 · 0 评论 -
AIGC技术研究与应用 ---- 下一代人工智能:新范式!新生产力!(6.1 - AIGC:GenerativeAI 的工业机遇)
工业大模型伴随着大模型技术的发展 ,逐渐渗透至工业 ,处于萌芽阶段。就大模型的本 质而言 ,是由一系列参数化的数学函数组成的计算系统 ,且是一个概率模型 ,其工作机 制是基于概率和统计推动进行的 ,而非真正的理解和逻辑推理 , 因此 , 当前大模型具有 不可解释性和幻觉不可消除等主要特征。就大模型落地工业的情况而言 ,工业互联网、原创 2024-12-22 23:38:57 · 141 阅读 · 0 评论 -
AIGC技术研究与应用 ---- 下一代人工智能:新范式!新生产力!(6.3 - AIGC:驱动工业智能化的新引擎,工业、制造业大模型应用案例赏析)
这使得多模态大模型在很多领域展示出了革命性的应用潜力,并且其有望变革工业设备智能运维领域的应用范式,推动构建智能化和自动化的工业设备运营维护系统,并降低设备监测、运营和维护所需要的人力成本。这些技术的应用使得即使在资源受限的环境下,也能够训练和部署高效且精确的工业大模型。大模型技术本身仍处于发展的早期阶段,各类新的技术和应用模型不断涌现,比如长文本能力的提升、Sora 等视频生成能力的增强,将进一步扩展大模型在工业应用的场景,Agent、具身智能等大模型应用模式的创新也将深化大模型在工业领域的应用。原创 2024-11-04 23:54:14 · 340 阅读 · 0 评论 -
使用 YOLOv11 进行 健身辅助,动作计数,动作矫正 -- AI 俯卧撑计数,AI 引体向上计数
主要是通过区分up 和down 来区分 是否完成了一整个step。原创 2024-10-16 10:46:55 · 577 阅读 · 0 评论 -
多模态大模型 + 数字人 实现半自动 演示文稿 PPT讲解 搭建赛博老师傅 助力程序员赛博飞升!!!
非常迅速的生成了一堆非常科普性质的PPT,而且一年的价格偏贵了。原创 2024-10-15 00:39:55 · 532 阅读 · 0 评论 -
中英双语面试、笔试题 - 计算机视觉 (2) : PyTorch与神经网络基础-Computer Vision Interview (2): PyTorch and Neural Networks
在每次迭代开始时清零梯度是为了确保每次反向传播计算的梯度只反映当前批次数据的影响,避免梯度累积带来的问题,确保模型训练的稳定性和准确性。这是深度学习训练中的一个常见且重要的步骤。PyTorch:通过修改forward方法或使用钩子(hooks)来获取中间层的输出。TensorFlow:通过修改模型架构或使用Model类创建新的模型来获取中间层的输出。这些方法可以帮助你获取神经网络中间层的值,以便进行进一步的分析和应用。序贯模型(Sequential Model)是一种简单而直观的方式来构建神经网络架构。原创 2024-10-06 01:07:59 · 231 阅读 · 0 评论 -
中英双语面试、笔试题 -- 计算机视觉(1) : 神经网络基础;Computer Vision Interview (1) :Fundamentals of Neural Networks
*随机梯度下降(Stochastic Gradient Descent, SGD)**是机器学习中常用的一种优化算法,其目的是最小化损失函数(或称为目标函数、成本函数)。与标准梯度下降方法不同,标准梯度下降计算整个训练数据集关于模型参数的梯度并据此更新参数,而随机梯度下降则在每次迭代时仅利用一个训练样本来估计梯度,并据此调整参数。原创 2024-09-17 16:25:27 · 237 阅读 · 0 评论 -
计算机视觉、目标检测、视频分析的过去和未来:目标检测从入门到精通 ------ YOLOv8 到 多模态大模型处理视觉基础任务
自注意力机制和注意力机制的区别就在于,注意力机制的查询和键是不同来源的,例如,在Encoder-Decoder模型中,键是Encoder中的元素,而查询是Decoder中的元素。在中译英模型中,查询是中文单词特征,而键则是英文单词特征。而自注意力机制的查询和键则都是来自于同一组的元素,例如,在Encoder-Decoder模型中,查询和键都是Encoder中的元素,即查询和键都是中文特征,相互之间做注意力汇聚。从剩余的预测框中选择一个与基准框的重叠面积最大的框,如果其重叠面积大于一定的阈值,则将其删除。原创 2024-07-03 19:57:49 · 663 阅读 · 0 评论 -
windows 下 基于 WSL2安装DeepSpares进行YOLOV8 v5 的加速推理
硬件要求:CPU 支持 avx2 指令集软件:操作系统只支持Linux可以通过查看CPU的规格或者使用特定的命令来检测CPU是否支持AVX2指令集。查看CPU规格:直接查看CPU的规格说明,通常在购买CPU时,其包装或者产品描述中会明确指出支持的指令集。访问CPU制造商的官方网站,通过搜索型号可以获取详细的CPU规格信息。使用系统命令:在Linux系统中,可以使用命令cat /proc/cpuinfo来查看CPU信息。原创 2024-06-12 18:27:04 · 467 阅读 · 0 评论 -
Windows 搭建C++ 纯开源开发环境 进行 YOLOv8 模型推理的开发测试环境
本人试了很多办法,发现opencv-vc16的库无法被调用,查了很多资料才发现是mingw和vc16有兼容问题,最后使用opencv-mingw的库可以完美解决。十几年过去了,我第一次写大型项目就用的Codeblocks ,其实能写C++ 的IDE 非常多,比如最近很火的Visual studio code ,当然如果你的环境可以装Visual studio 那当然是首选,但是为了减少配置和 支持跨平台,我们用久经考验的Codeblocks。在配置 的时候发现 一些有用的链接,比如包管理什么的。原创 2024-06-04 17:00:53 · 835 阅读 · 0 评论 -
使用YOLOv8 YOLOv5 进行距离测量,速度测量。使用目标检测进行测距,测速是如何实现的呢?
导读在精确检测车速车距的方案中,视觉方案是非常具有挑战性的,但由于没有昂贵的距离传感器而大幅降低成本,所以潜力巨大。本文综述了基于视觉的车辆速度、距离估计。并建立了一个完整的分类法,对大量工作进行分类,对涉及的所有阶段进行分类。除此之外,还提供了详细的性能评估指标和可用数据集概述。最后,论文讨论了当前的局限性和未来的方向。应用背景车辆速度的准确估计是智能交通系统(ITS)的关键组成,这需要解决诸如同步数据记录、表示、检测和跟踪、距离和速度估计等问题。原创 2024-05-11 22:57:28 · 771 阅读 · 0 评论 -
基于大语言模型的本地知识库问答系统构建方案
RAG 代表以下三个关键步骤「检索(Retrive)」 根据用户请求从外部知识源检索相关上下文。为此,使用嵌入模型将用户查询嵌入到与向量数据库中的附加上下文相同的向量空间中。这允许执行相似性搜索,并返回矢量数据库中最接近的前 k 个数据对象。「增强(Augment)」 用户查询和检索到的附加上下文被填充到提示模板中。「生成(Generate)」 最后,检索增强提示被馈送到 LLM。原创 2024-04-22 16:44:04 · 983 阅读 · 0 评论 -
Windows 下融合使用开源组件进行视频内容分析,shotcut ,autocut 剪辑 whisper智能化编辑双语字幕等
下面以这个黄仁勋访谈视频为例简要介绍分析的步骤。原创 2024-04-06 19:00:09 · 432 阅读 · 0 评论 -
教你利用多模态视觉大模型做目标检测 Object Detection!制造业能有那些场景使用大模型呢?还看YOLOv8,YOLOv9,YOLOv10,YOLOv11呢,烂怂卷积有啥好看的?
最近的多模态大型语言模型(MLLMs)在视觉-语言任务(如图像标注和问题回答)中表现出色,但它们缺乏基本的感知能力,即对象检测。在这项工作中,我们通过引入一个新的研究问题——上下文对象检测,来解决这一局限性,即在不同的人机交互上下文中理解可见对象。有一次我在单位汇报的时候,大领导问:深度学习先在还这么落后嘛?每次解决一个问题还要重新训练一个模型?后Sora时代,CV从业者如何选择模型?阿里云学习平台与通义千问。原创 2024-03-17 14:07:11 · 2030 阅读 · 0 评论 -
基于YOLOv8的手机摄像头的自动检测系统
在工厂制造过程中,增加摄像头检测的测试,能够保证移动终端的拍摄质量。但随着移动终端生产制造的规模越来越大,人力资源的成本越来越高,只有尽可能的降低测试成本和更有效的自动化生产,才能保证移动终端产品质量和控制生产成本。这对移动终端产品的生产测试技术要求也越来越高。原创 2024-03-11 00:53:03 · 577 阅读 · 0 评论 -
利用YOLOv8 pose estimation 进行 人的 头部等马赛克
之前写过一个文章记录,怎么对人进行目标检测后打码,但是人脸识别有个问题是,很多人的背影,或者侧面无法识别出来人脸,那么我们就可以用姿态估计中的关键点信息进行补充,对人头进行打码,从而进一步的保护隐私信息。原创 2024-02-10 23:05:00 · 1184 阅读 · 0 评论 -
YOLOv8.1 都有哪些新特性?Ultralytics v8.1.0 release:OBB - Oriented object detection 定向目标检测
使用定向包围框(oriented bounding box)进行目标检测可以通过减少与背景区域的重叠来更好地定位有旋转倾斜的目标。现有的OBB方法大多是在水平包围框检测器(horizontal bounding box)上通过引入额外的角度尺度(通过距离损失进行优化)构建的。定向物体检测比物体检测更进一步,并引入了一个额外的角度来更准确地定位图像中的物体。定向对象检测器的输出是一组旋转的边界框,这些边界框精确地包围了图像中的对象,以及每个框的类标签和置信度分数。原创 2024-02-08 12:43:25 · 560 阅读 · 0 评论 -
上手大模型,武装到牙齿,惊艳所有人!:一些惊艳的大模型应用和边缘端推理实现方案
如果我们想让模型做智能问答,我们可以使用一些包含问题和答案对的数据集来微调模型,使它能够根据给定的问题生成合适的答案。编码器-解码器架构:编码器-解码器架构由编码器(encoder)和解码器(decoder)两部分组成,编码器负责将输入文本转换为一个固定长度的向量表示,解码器负责根据这个向量表示生成输出文本。这是因为增加的编译器步骤允许优化,包括代码的高级表示(例如,循环展开)和低级执行(例如,强制操作对象与硬件处理器原生支持的类型之间的转换) ,这使得代码的执行速度更快,快了一个数量级。原创 2023-12-27 09:37:03 · 802 阅读 · 0 评论 -
YOLOv8 如何进行多任务合并:分割与检测合并进行自动驾驶
YOLOM 的翻译地址:https://zhuanlan.zhihu.com/p/660618705。YOLOv8 github 下面分类相关问题。pytorch 的几种卷积。原创 2023-12-24 23:49:14 · 1347 阅读 · 0 评论 -
YOLOv8 如何进行多任务:以图像分类为例
vscode的调试配置里有个重要的选项没配置,就是"justMyCode": false。这个选项默认是true,是进不了第三方包源码的,所以要改成false。yolov8 图像分类的网络结构很简单,就是Conv 和C2f 的 类似卷积的重复。不同模型就是参数量级的不同。YOLOM 的翻译地址:https://zhuanlan.zhihu.com/p/660618705。主要就是 多了一个:reshape_outputs。YOLOv8 github 下面分类相关问题。原创 2023-12-18 00:40:35 · 2545 阅读 · 0 评论 -
初学者如何入门 Generative AI 之 Stable Diffusion 与 CLIP :看两篇综述,玩几个应用感受一下先!超多高清大图,沉浸式体验
扩散模型的核心思想是通过逐步向图像添加高斯斯噪声,使其逼近真实数据分布,然后通过逆向过程去除除噪声,从而恢复出原始图像。Stable Diffusion是一种基于于潜在扩散模型(Latent Diffusion Model)的文本到图像(Text-to-Image)模型,它利用用潜在表示空间和自回归方法来生成高分辨率图片。Diffusion Model:Diffusion Model是一种基于随机过程和扩散过程的模型,它通过逐步引入随机性来生成图像。原创 2023-12-10 19:07:55 · 761 阅读 · 0 评论 -
初学者如何入门Generative AI 之 Transformer 解析与应用:看两篇综述,玩几个应用感受一下先!超多高清大图,沉浸式体验
Generative artificial intelligence (also generative AI or GenAI) is artificial intelligence capable of generating text, images, or other media, using generative models.原创 2023-12-03 15:02:37 · 485 阅读 · 0 评论