阶段划分
结构与功能概述
- 顶层为各Phase(阶段),如
DemandAnalysis
、DataCrawling
等,每个key代表一个业务环节。 - 每阶段有:
assistant_role_name
:AI助手扮演的角色。例如“DataEngineer”。user_role_name
:用户/对话另一角色。例如“ChiefExecutiveOfficer”。phase_prompt
:多轮对话指令或流程控制,给定参与者每步要关注的内容和讨论规范。
各阶段核心逻辑
1. DemandAnalysis
(需求分析)
- 明确讨论“产品类型(如文档、PPT)”并反复达成共识,只允许讨论需求拆解,终止需采用统一格式。
- 强化角色分工:CEO为需求方,AI为CMO。
2. DataCrawling
(数据爬取/分析)
- AI作为“DataEngineer”,需针对CEO设定的任务明确分析目标。
- 受限于“只能讨论数据分析”,不能偏离话题,终止语格式有要求。
3. AdvertisingShootingSuggestions
(广告拍摄建议)
- 角色设定和上面类似,着重于提供“可实施”的创意拍摄建议,要求方案细致(解构提纲、视觉建议、文案等)。
4. MarketAnalysis
(市场分析)
- 由“市场分析师”针对任务、创意和数据分析市场现状,以及各渠道品牌表现。
- 输出必须聚焦行业趋势、投放效果和不同平台表现。
5. RecommendationsForPlacement
(广告投放建议)
- “策略规划师”基于上一阶段的市场分析和数据摘要,输出 两套以上的广告投放渠道组合和预算分配方案。
- 明确关联数据结构,便于后续更深的埋点与数据分析。
6. PPTGeneration
(PPT生成)
- 可以看作是整个经验成果的产出阶段,由 “PPTCreator” 整合方案、建议生成完整演示文稿。
- 需结合前面方案(投放建议+拍摄建议),内容要能对内有说服力。
7. TaskDataClassifier
(数据任务分类)
- 角色对调为CEO主导,目的是在众多数据文件中快速锁定相关数据资产。
- 极度简化交互,确保效率和规范。
特色与优势
- 高规范性:每一步都有输出限制(如只讨论某类问题、终止语格式规则),有利于自动化判断阶段完成状态和流转节点;
- 多角色设定:提升协作真实感,有助于AI角色扮演、场景逼真;
- 阶段性递进:每阶段衔接紧密(需求→数据→创意→策略→成果),支撑完整闭环流程;
- 信息占位符机制:如
{task}
、{description}
,方便动态拼接上下文任务。
适用场景
- 企业数据驱动型广告或市场项目的AI对话流程
- 需要多个AI角色和用户参与,有明确阶段产物和成果的场景
- 自动化需求梳理、数据处理、策略制订到成果输出的闭环