山东大学软件学院创新实训<五>

阶段划分

结构与功能概述

  • 顶层为各Phase(阶段),如 DemandAnalysisDataCrawling 等,每个key代表一个业务环节。
  • 每阶段有:
    • assistant_role_name:AI助手扮演的角色。例如“DataEngineer”。
    • user_role_name:用户/对话另一角色。例如“ChiefExecutiveOfficer”。
    • phase_prompt:多轮对话指令或流程控制,给定参与者每步要关注的内容和讨论规范。

各阶段核心逻辑

1. DemandAnalysis(需求分析)

  • 明确讨论“产品类型(如文档、PPT)”并反复达成共识,只允许讨论需求拆解,终止需采用统一格式。
  • 强化角色分工:CEO为需求方,AI为CMO。

2. DataCrawling(数据爬取/分析)

  • AI作为“DataEngineer”,需针对CEO设定的任务明确分析目标。
  • 受限于“只能讨论数据分析”,不能偏离话题,终止语格式有要求。

3. AdvertisingShootingSuggestions(广告拍摄建议)

  • 角色设定和上面类似,着重于提供“可实施”的创意拍摄建议,要求方案细致(解构提纲、视觉建议、文案等)。

4. MarketAnalysis(市场分析)

  • 由“市场分析师”针对任务、创意和数据分析市场现状,以及各渠道品牌表现。
  • 输出必须聚焦行业趋势、投放效果和不同平台表现

5. RecommendationsForPlacement(广告投放建议)

  • “策略规划师”基于上一阶段的市场分析和数据摘要,输出 两套以上的广告投放渠道组合和预算分配方案
  • 明确关联数据结构,便于后续更深的埋点与数据分析。

6. PPTGeneration(PPT生成)

  • 可以看作是整个经验成果的产出阶段,由 “PPTCreator” 整合方案、建议生成完整演示文稿。
  • 需结合前面方案(投放建议+拍摄建议),内容要能对内有说服力

7. TaskDataClassifier(数据任务分类)

  • 角色对调为CEO主导,目的是在众多数据文件中快速锁定相关数据资产。
  • 极度简化交互,确保效率和规范。

特色与优势

  1. 高规范性:每一步都有输出限制(如只讨论某类问题、终止语格式规则),有利于自动化判断阶段完成状态和流转节点;
  2. 多角色设定:提升协作真实感,有助于AI角色扮演、场景逼真;
  3. 阶段性递进:每阶段衔接紧密(需求→数据→创意→策略→成果),支撑完整闭环流程;
  4. 信息占位符机制:如 {task}{description},方便动态拼接上下文任务。

适用场景

  • 企业数据驱动型广告或市场项目的AI对话流程
  • 需要多个AI角色和用户参与,有明确阶段产物和成果的场景
  • 自动化需求梳理、数据处理、策略制订到成果输出的闭环
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值