NLP理论基础和实践(进阶)task 6

Attention原理

目前大多数的注意力模型都是依附在 Encoder-Decoder 框架下,但并不是只能运用在该模型中,attention机制作为一种思想可以和多种模型进行结合,其本身不依赖于任何一种框架。Encoder-Decoder 框架是深度学习中非常常见的一个模型框架,例如在 Image Caption 的应用中 Encoder-Decoder 就是 CNN-RNN 的编码 - 解码框架;在神经网络机器翻译中 Encoder-Decoder 往往就是 LSTM-LSTM 的编码 - 解码框架,在机器翻译中也被叫做 Sequence to Sequence learning 。

所谓编码,就是将输入的序列编码成一个固定长度的向量;解码,就是将之前生成的固定向量再解码成输出序列。这里的输入序列和输出序列正是机器翻译的结果和输出。

为了说明 Attention 机制的作用,以 Encoder-Decoder 框架下的机器翻译的应用为例,该框架的抽象表示如下图:

uploading-image-481071.png

 

为了方便阐述,在选取 Encoder 和 Decoder 时都假设其为 RNN。在 RNN 中,当前时刻隐藏状态 htht 是由上一时刻的隐藏状态 ht−1ht−1 和当前时刻的输入 xtxt 决定的,如公式(1)所示:

 

ht=f(ht−1,xt)(1)(1)ht=f(ht−1,xt)

 

在 编码阶段,获得各个时刻的隐藏层状态后,通过把这些隐藏层的状态进行汇总,可以生成最后的语义编码向量 CC ,如公式(2)所示,其中 qq 表示某种非线性神经网络,此处表示多层 RNN 。

 

C=q(h1,h2,⋯,hTx)(2)(2)C=q(h1,h2,⋯,hTx)

 

在一些应用中,也可以直接将最后的隐藏层编码状态作为最终的语义编码 CC,即满足:

 

C=q(h1,h2,⋯,hTx)=hTx(3)(3)C=q(h1,h2,⋯,hTx)=hTx

 

在 解码阶段,需要根据给定的语义向量 CC 和之前已经生成的输出序列 y1,y2,⋯,yt−1y1,y2,⋯,yt−1 来预测下一个输出的单词 ytyt,即满足公式(4):

 

yt=argmaxP(yt)=∏t=1Tp(yt|y1,y2,⋯,yt−1,C)(4)(4)yt=arg⁡maxP(yt)=∏t=1Tp(yt|y1,y2,⋯,yt−1,C)

 

由于我们此处使用的 Decoder 是 RNN ,所以当前状态的输出只与上一状态和当前的输入相关,所以可以将公式(4)简写成如下形式:

 

yt=g(yt−1,st−1,C)(5)(5)yt=g(yt−1,st−1,C)

 

在公式(5)中,st−1st−1 表示 Decoder 中 RNN 神经元的隐藏层状态,yt−1yt−1 表示前一时刻的输出,CC 代表的是编码后的语义向量,而 g(⋅)g(⋅) 则是一个非线性的多层神经网络,可以输出 ytyt 的概率,一般情况下是由多层 RNN 和 softmax 层组成。

局限性

Encoder-Decoder 框架虽然应用广泛,但是其存在的局限性也比较大。其最大的局限性就是 Encoder 和 Decoder 之间只通过一个固定长度的语义向量 CC 来唯一联系。也就是说,Encoder 必须要将输入的整个序列的信息都压缩进一个固定长度的向量中,存在两个弊端:一是语义向量 C 可能无法完全表示整个序列的信息;二是先输入到网络的内容携带的信息会被后输入的信息覆盖掉,输入的序列越长,该现象就越严重。这两个弊端使得 Decoder 在解码时一开始就无法获得输入序列最够多的信息,因此导致解码的精确度不够准确。

Attention 机制

在上述的模型中,Encoder-Decoder 框架将输入 XX 都编码转化为语义表示 CC,这就导致翻译出来的序列的每一个字都是同权地考虑了输入中的所有的词。例如输入的英文句子是:Tom chase Jerry,目标的翻译结果是:汤姆追逐杰瑞。在未考虑注意力机制的模型当中,模型认为 汤姆 这个词的翻译受到 Tomchase 和 Jerry 这三个词的同权重的影响。但是实际上显然不应该是这样处理的,汤姆 这个词应该受到输入的 Tom 这个词的影响最大,而其它输入的词的影响则应该是非常小的。显然,在未考虑注意力机制的 Encoder-Decoder 模型中,这种不同输入的重要程度并没有体现处理,一般称这样的模型为 分心模型

而带有 Attention 机制的 Encoder-Decoder 模型则是要从序列中学习到每一个元素的重要程度,然后按重要程度将元素合并。因此,注意力机制可以看作是 Encoder 和 Decoder 之间的接口,它向 Decoder 提供来自每个 Encoder 隐藏状态的信息。通过该设置,模型能够选择性地关注输入序列的有用部分,从而学习它们之间的“对齐”。这就表明,在 Encoder 将输入的序列元素进行编码时,得到的不在是一个固定的语义编码 C ,而是存在多个语义编码,且不同的语义编码由不同的序列元素以不同的权重参数组合而成。

未完,待续。。。

han的原理

利用attention模型进行文本分类

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值