机器学习-直方图和核密度估计(Kernel Density Estimates)

1、直方图的问题

①直方图装箱(binning)的过程会导致信息丢失。

②直方图不是唯一的。对比起来比较困难。

③直方图不是平滑的

④直方图不能很好的处理极值

核密度估计(KDE)完全没有上述的问题。

构建KDE需要准备核函数:下面是常用的核函数图形和定义。

构建一个KDE包含两部分:

①把kernel偏移到特定的位置

②设定带宽bindwidth

下图是高斯kernel在不同的带宽和位置的情况下的图形:

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值