矩阵树定理的运用

证明日常见SLS大佬
我来说说它的用法和一些常用题型
1.求一个图的生成树个数
这个是基础运用
对于一条边 ( x , y ) (x,y) (x,y),使 a [ x ] [ x ] + + , a [ y ] [ y ] + + , a [ x ] [ y ] − − , a [ y ] [ x ] − − a[x][x]++,a[y][y]++,a[x][y]--,a[y][x]-- a[x][x]++,a[y][y]++,a[x][y],a[y][x]
就是度数矩阵-邻接矩阵
对这个矩阵做上三角高斯消元,对角线的数和就是答案(所谓的求矩阵行列式的值)
具体求法看这篇博客,很具体,讲的很好
2.给定边权,求生成树边权乘积之和
引入变元矩阵树定理:将原来的 + + ++ ++改成 + v a l ( x , y ) +val(x,y) +val(x,y), − − -- 改成 − v a l ( x , y ) -val(x,y) val(x,y)
同样的求法可以求出答案
3.给出有向图和其中的一个点,求以这个点为根的生成外(内)向树个数。
既然是有向图,那么对于一条边 ( x , y ) (x,y) (x,y),只有 a [ x ] [ y ] − − a[x][y]-- a[x][y]
外向树就将 a [ y ] + + a[y]++ a[y]++,内向树将 a [ x ] + + a[x]++ a[x]++
去掉矩阵内根这个点所在的行与列,求其行列式的值即可
4.给定边权,求生成树边权异或之和
以下时间复杂度 O ( n 3 w ) O(n^3w) O(n3w)
那我们就假设 0 < = w < = 255 0<=w<=255 0<=w<=255
对于每一个边权 w w w,构造多项式 F F F,使得 F [ w ] = 1 F[w]=1 F[w]=1,其它位置都是 0 0 0
对它做一个 F W T FWT FWT x o r xor xor卷积
枚举权值 p ( 0 − 255 ) p(0-255) p(0255),在每一个对应的 p p p下,两条边边权是 F [ p ] F[p] F[p]
每次求出矩阵行列式值 s s s之后将它放入 g g g数组中, g [ p ] = s g[p]=s g[p]=s
对于 g g g做一次 I F W T IFWT IFWT x o r xor xor卷积
此时 g [ p ] g[p] g[p]代表的就是在p这个异或值下生成树的个数
输出 ∑ i = 1 n g [ i ] ∗ i \sum_{i=1}^{n}g[i]*i i=1ng[i]i就可以了

#include <cstdio>
#include <cstring>
#include <algorithm>
#define ll long long
#define mo 998244353
#define inv2 499122177
using namespace std;
ll i,j,k,m,n,o,p,l,s,t,ans;
struct node{
	ll x,y,z; 
}a[10005];
ll b[10005][513],c[513],d[513];
ll f[65][65];
void FWT(ll *a,ll opt)
{
    for (ll i=1;i<256;i<<=1)
        for (ll p=i<<1,j=0;j<256;j+=p)
            for (ll k=0;k<i;++k)
            {
                ll X=a[j+k],Y=a[i+j+k];
                a[j+k]=X+Y;a[i+j+k]=(X-Y+mo)%mo;
                if (opt==-1)
					a[j+k]=a[j+k]*inv2%mo,a[i+j+k]=a[i+j+k]*inv2%mo;
            }
}
void read(ll &x)
{
	char ch=getchar();x=0;
	while (ch<'0'||ch>'9') ch=getchar();
	while (ch>='0'&&ch<='9') x=(x<<3)+(x<<1)+ch-48,ch=getchar();
}
void add(ll x,ll y,ll z) 
{
	f[x][x]+=z,f[x][y]+=-z;f[x][x]%=mo,f[x][y]%=mo;//血泪教训,这里一定要取模!
}
int main()
{
	freopen("count.in","r",stdin);
	freopen("count.out","w",stdout);
	read(n),read(m);
	for (i=1;i<=m;i++) read(a[i].x),read(a[i].y),read(a[i].z);
	for (i=1;i<=m;i++)
	{
		memset(c,0,sizeof(c));
		c[a[i].z]=1;
		FWT(c,1);
		memcpy(b[i],c,sizeof(b[i]));
	}
	for (p=0;p<=255;p++)
	{
		if (p==15)
		{
			int sfgx=0;
		}
		memset(f,0,sizeof(f));
		for (i=1;i<=m;i++) 
			add(a[i].x,a[i].y,b[i][p]),add(a[i].y,a[i].x,b[i][p]);
		s=1;
		for (i=1;i<=n-1;i++)
		{
			for (j=i+1;j<=n-1;j++)
			{
				while (f[j][i])
				{
					o=f[i][i]/f[j][i];
					for (k=i;k<=n-1;k++)
						f[i][k]=(f[i][k]-(o*f[j][k]%mo)+mo)%mo;
					swap(f[i],f[j]);
					s=-s;
				}
			}
			s=s*f[i][i]%mo;
		}
		d[p]=s;
	}
	FWT(d,-1);
	for (i=0;i<=255;i++) 
		ans=(ans+(i*d[i]%mo)+mo)%mo;
	printf("%lld\n",ans);
	return 0;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值