二分查找法

力扣链接

目录

#思路

#二分法第一种写法[left, right]

#二分法第二种写法

力扣链接

给定一个 n 个元素有序的(升序)整型数组 nums 和一个目标值 target  ,写一个函数搜索 nums 中的 target,如果目标值存在返回下标,否则返回 -1。

示例 1:

输入: nums = [-1,0,3,5,9,12], target = 9     
输出: 4       
解释: 9 出现在 nums 中并且下标为 4     

示例 2:

输入: nums = [-1,0,3,5,9,12], target = 2     
输出: -1        
解释: 2 不存在 nums 中因此返回 -1        

提示:

  • 你可以假设 nums 中的所有元素是不重复的。
  • n 将在 [1, 10000]之间。
  • nums 的每个元素都将在 [-9999, 9999]之间。

#思路

这道题目的前提是数组为有序数组,同时题目还强调数组中无重复元素,因为一旦有重复元素,使用二分查找法返回的元素下标可能不是唯一的,这些都是使用二分法的前提条件,当大家看到题目描述满足如上条件的时候,可要想一想是不是可以用二分法了。

二分查找涉及的很多的边界条件,逻辑比较简单,但就是写不好。例如到底是 while(left < right) 还是 while(left <= right),到底是right = middle呢,还是要right = middle - 1呢?

大家写二分法经常写乱,主要是因为对区间的定义没有想清楚,区间的定义就是不变量。要在二分查找的过程中,保持不变量,就是在while寻找中每一次边界的处理都要坚持根据区间的定义来操作,这就是循环不变量规则。

写二分法,区间的定义一般为两种,左闭右闭即[left, right],或者左闭右开即[left, right)

下面我用这两种区间的定义分别讲解两种不同的二分写法。

#二分法第一种写法[left, right]

区间的定义这就决定了二分法的代码应该如何写,因为定义target在[left, right]区间,所以有如下两点:

  • while (left <= right) 要使用 <= ,因为left == right是有意义的,所以使用 <=
  • if (nums[mid] > target) right 要赋值为 mid - 1,因为当前这个nums[mid]一定不是target,那么接下来要查找的左区间结束下标位置就是 mid - 1
class Solution {
public:
    int search(vector<int>& nums, int target) 
    {    
        // 定义target在左闭右闭的区间里,[left, right]      
        int left = 0, right = nums.size()-1; 
        // left==right,[left, right]依然有效,所以用 <=  
        while(left <= right)                
        {
            // 防止溢出 等同于(left + right)/2
            int mid = left + ((right - left)>>1);    

            // target 在右区间,且nums[mid]!=target 所以[mid+1, right]
            if (nums[mid] < target)
            {
                left = mid + 1;       
            }
            
            // target 在左区间,且nums[mid]!=target 所以[left, mid-1]
            else if (nums[mid] > target)
            {       
                right = mid - 1;
            }

            // nums[mid] ==target,数组中找到目标值,直接返回下标                   
            else                                     
                return mid;                          
        }   
        // 未找到目标                         
        return -1;                                   
    }
};

#二分法第二种写法

如果说定义 target 是在一个在左闭右开的区间里,也就是[left, right) ,那么二分法的边界处理方式则截然不同。

有如下两点:

  • while (left < right),这里使用 < ,因为left == right在区间[left, right)是没有意义的
  • if (nums[middle] > target) right 更新为 middle,因为当前nums[middle]不等于target,去左区间继续寻找,而寻找区间是左闭右开区间,所以right更新为middle,即:下一个查询区间不会去比较nums[middle]

在数组:1,2,3,4,7,9,10中查找元素2,如图所示:(注意和方法一的区别

class Solution {
public:
    int search(vector<int>& nums, int target) 
    {    
        // 定义target在左闭右闭的区间里,[left, right)      
        int left = 0, right = nums.size(); 
        // [left, right),left==right无意义,所以用 <  
        while(left < right)                
        {
            int mid = left + ((right - left)>>1);    

            if (nums[mid] < target)
            {
                left = mid + 1;         //左边依然是闭区间
            }
            
     
            //右边是开区间,即便nums[mid]!=target,也可以当右区间
            else if (nums[mid] > target)
            {       
                right = mid;       
            }
               
            else                                     
                return mid;                          
        }                         
        return -1;                                   
    }
};

相关题目推荐

35.搜索插入位置

给定一个排序数组和一个目标值,在数组中找到目标值,并返回其索引。如果目标值不存在于数组中,返回它将会被按顺序插入的位置。

请必须使用时间复杂度为 O(log n) 的算法。

 35_搜索插入位置3

  • 目标值在数组所有元素之前
  • 目标值等于数组中某一个元素
  • 目标值插入数组中的位置
  • 目标值在数组所有元素之后
  • 暴力解法

    暴力解题 不一定时间消耗就非常高,关键看实现的方式,就像是二分查找时间消耗不一定就很低,是一样的。

    // 暴力搜索法
    class Solution {
    public:
        int searchInsert(vector<int>& nums, int target) {
            for (int i = 0; i < nums.size(); i++) 
            {
                if (nums[i] >= target) 
                { // 一旦发现大于或者等于target的num[i],那么i就是我们要的结果
                    return i;
                }
            }
            // 目标值在数组所有元素之后的情况
            return nums.size(); // 如果target是最大的,或者 nums为空,则返回nums的长度
        }
    };
    
  • 时间复杂度:O(n)
  • 空间复杂度:O(1)

    二分法

    既然暴力解法的时间复杂度是$O(n)$,就要尝试一下使用二分查找法。

    35_搜索插入位置4

    大家注意这道题目的前提是数组是有序数组,这也是使用二分查找的基础条件

    以后大家只要看到面试题里给出的数组是有序数组,都可以想一想是否可以使用二分法。

    同时题目还强调数组中无重复元素,因为一旦有重复元素,使用二分查找法返回的元素下标可能不是唯一的。

    大体讲解一下二分法的思路,这里来举一个例子,例如在这个数组中,使用二分法寻找元素为5的位置,并返回其下标。

     35_搜索插入位置5

     以下的代码中定义 target 是在一个在左闭右闭的区间里,也就是[left, right] (这个很重要)

  • class Solution { //二分查找法
    public:
        int searchInsert(vector<int>& nums, int target) {
            int left = 0, right = nums.size() - 1;
            
            while (left <= right)
            {
                int mid = left + ((right - left) / 2);
                if (nums[mid] < target)
                    left = mid + 1;
                else if (nums[mid] > target)
                    right = mid - 1;
                else
                    return mid;             // 目标值等于数组中某一个元素  return middle;
            }
           // 数组中没有target,则分别处理如下三种情况
           // 跳出循环后存在几种情况:
           // 1.left和right同时指向第一个位置,但还是大于target,right = 0-1 = -1,right+1就是第一个位置
           // 2.left和right同时指向最后得位置,但nums[mid]<target,left++定位到,right+1得位置
           //3.当left>right出循环后,right指向第一个小于target值的位置,将target插到right+1即可
    
            return right + 1; // return left
        }
    };

    34. 在排序数组中查找元素的第一个和最后一个位置

  • 给你一个按照非递减顺序排列的整数数组 nums,和一个目标值 target。请你找出给定目标值在数组中的开始位置和结束位置。

    如果数组中不存在目标值 target,返回 [-1, -1]。

    你必须设计并实现时间复杂度为 O(log n) 的算法解决此问题。

    #思路

  • 法一:双指针搜索

  • left从左往右找target ,right从右往左找target
  • // 左右双指针找target
    class Solution {
    public:
        vector<int> searchRange(vector<int>& nums, int target) 
        {
            if(nums.empty()) return {-1,-1};
        
            int left = 0, right = nums.size() - 1; 
            if( left <= right)			        
            {
                while(nums[left] < target && left < nums.size()-1 )
                    left++;
                while(nums[right] > target && right > 0)
                    right--; 
            }
            
            if(nums[left] != target)
                return {-1,-1};
            return {left,right};
        }
    };

  • 情况一:
    • target 在数组范围的右边或者左边,例如数组{3, 4, 5},target为2或者数组{3, 4, 5},target为6,此时应该返回{-1, -1}
  • 情况二
    • target 在数组范围中,且数组中不存在target,例如数组{3,6,7},target为5,此时应该返回{-1, -1}
  • 情况三:

69.x的平方根

给你一个非负整数 x ,计算并返回 x 的 算术平方根 。

由于返回类型是整数,结果只保留 整数部分 ,小数部分将被 舍去 。

注意:不允许使用任何内置指数函数和算符,例如 pow(x, 0.5) 或者 x ** 0.5 。

示例 1:

输入:x = 4
输出:2

示例 2:

输入:x = 8
输出:2
解释:8 的算术平方根是 2.82842..., 由于返回类型是整数,小数部分将被舍去。

二分查找的下界为 0,上界可以粗略地设定为 x。在二分查找的每一步中,我们只需要比较中间元素 mid²与 x 的大小关系,并通过比较的结果调整上下界的范围。

class Solution {
public:
    int mySqrt(int x) {
        /*可能出现x=0或1,所以取闭区间[0,x]*/
        int left = 0, right = x;

        while(left <= right){
            int mid = left + (right - left)/2;
            if ((long)mid*mid < x )             // 防止整型溢出,改为字节数更大的long型
                left = mid + 1;
            else if ((long)mid*mid > x)
                right = mid - 1;
            else
                return mid;                     // 恰好能找到x开方的整数
        }
        // 跳出循环时right = left - 1,没有元素恰好平方为x,此时(right)² < x² < (left)²;
        return right;
    }
};

367.有效的完全平方数 

思路同上题

class Solution {
public:
    bool isPerfectSquare(int num) {
        int left = 0, right = num;
        
        while (left <= right){
            int mid = left + ((right - left)/2);
            if ((long)mid*mid < num)
                left = mid + 1;
            else if ((long)mid*mid > num)
                right = mid - 1;
            else
                return true;
        }
        return false;
    }
};

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值