目录
给定一个 n 个元素有序的(升序)整型数组 nums 和一个目标值 target ,写一个函数搜索 nums 中的 target,如果目标值存在返回下标,否则返回 -1。
示例 1:
输入: nums = [-1,0,3,5,9,12], target = 9
输出: 4
解释: 9 出现在 nums 中并且下标为 4
示例 2:
输入: nums = [-1,0,3,5,9,12], target = 2
输出: -1
解释: 2 不存在 nums 中因此返回 -1
提示:
- 你可以假设 nums 中的所有元素是不重复的。
- n 将在 [1, 10000]之间。
- nums 的每个元素都将在 [-9999, 9999]之间。
#思路
这道题目的前提是数组为有序数组,同时题目还强调数组中无重复元素,因为一旦有重复元素,使用二分查找法返回的元素下标可能不是唯一的,这些都是使用二分法的前提条件,当大家看到题目描述满足如上条件的时候,可要想一想是不是可以用二分法了。
二分查找涉及的很多的边界条件,逻辑比较简单,但就是写不好。例如到底是 while(left < right)
还是 while(left <= right)
,到底是right = middle
呢,还是要right = middle - 1
呢?
大家写二分法经常写乱,主要是因为对区间的定义没有想清楚,区间的定义就是不变量。要在二分查找的过程中,保持不变量,就是在while寻找中每一次边界的处理都要坚持根据区间的定义来操作,这就是循环不变量规则。
写二分法,区间的定义一般为两种,左闭右闭即[left, right],或者左闭右开即[left, right)。
下面我用这两种区间的定义分别讲解两种不同的二分写法。
#二分法第一种写法[left, right]
区间的定义这就决定了二分法的代码应该如何写,因为定义target在[left, right]区间,所以有如下两点:
- while (left <= right) 要使用 <= ,因为left == right是有意义的,所以使用 <=
- if (nums[mid] > target) right 要赋值为 mid - 1,因为当前这个nums[mid]一定不是target,那么接下来要查找的左区间结束下标位置就是 mid - 1
class Solution {
public:
int search(vector<int>& nums, int target)
{
// 定义target在左闭右闭的区间里,[left, right]
int left = 0, right = nums.size()-1;
// left==right,[left, right]依然有效,所以用 <=
while(left <= right)
{
// 防止溢出 等同于(left + right)/2
int mid = left + ((right - left)>>1);
// target 在右区间,且nums[mid]!=target 所以[mid+1, right]
if (nums[mid] < target)
{
left = mid + 1;
}
// target 在左区间,且nums[mid]!=target 所以[left, mid-1]
else if (nums[mid] > target)
{
right = mid - 1;
}
// nums[mid] ==target,数组中找到目标值,直接返回下标
else
return mid;
}
// 未找到目标
return -1;
}
};
#二分法第二种写法
如果说定义 target 是在一个在左闭右开的区间里,也就是[left, right) ,那么二分法的边界处理方式则截然不同。
有如下两点:
- while (left < right),这里使用 < ,因为left == right在区间[left, right)是没有意义的
- if (nums[middle] > target) right 更新为 middle,因为当前nums[middle]不等于target,去左区间继续寻找,而寻找区间是左闭右开区间,所以right更新为middle,即:下一个查询区间不会去比较nums[middle]
在数组:1,2,3,4,7,9,10中查找元素2,如图所示:(注意和方法一的区别)
class Solution {
public:
int search(vector<int>& nums, int target)
{
// 定义target在左闭右闭的区间里,[left, right)
int left = 0, right = nums.size();
// [left, right),left==right无意义,所以用 <
while(left < right)
{
int mid = left + ((right - left)>>1);
if (nums[mid] < target)
{
left = mid + 1; //左边依然是闭区间
}
//右边是开区间,即便nums[mid]!=target,也可以当右区间
else if (nums[mid] > target)
{
right = mid;
}
else
return mid;
}
return -1;
}
};
相关题目推荐
给定一个排序数组和一个目标值,在数组中找到目标值,并返回其索引。如果目标值不存在于数组中,返回它将会被按顺序插入的位置。
请必须使用时间复杂度为 O(log n) 的算法。
- 目标值在数组所有元素之前
- 目标值等于数组中某一个元素
- 目标值插入数组中的位置
- 目标值在数组所有元素之后
-
暴力解法
暴力解题 不一定时间消耗就非常高,关键看实现的方式,就像是二分查找时间消耗不一定就很低,是一样的。
// 暴力搜索法 class Solution { public: int searchInsert(vector<int>& nums, int target) { for (int i = 0; i < nums.size(); i++) { if (nums[i] >= target) { // 一旦发现大于或者等于target的num[i],那么i就是我们要的结果 return i; } } // 目标值在数组所有元素之后的情况 return nums.size(); // 如果target是最大的,或者 nums为空,则返回nums的长度 } };
- 时间复杂度:O(n)
- 空间复杂度:O(1)
二分法
既然暴力解法的时间复杂度是$O(n)$,就要尝试一下使用二分查找法。
大家注意这道题目的前提是数组是有序数组,这也是使用二分查找的基础条件。
以后大家只要看到面试题里给出的数组是有序数组,都可以想一想是否可以使用二分法。
同时题目还强调数组中无重复元素,因为一旦有重复元素,使用二分查找法返回的元素下标可能不是唯一的。
大体讲解一下二分法的思路,这里来举一个例子,例如在这个数组中,使用二分法寻找元素为5的位置,并返回其下标。
以下的代码中定义 target 是在一个在左闭右闭的区间里,也就是[left, right] (这个很重要)。
-
class Solution { //二分查找法 public: int searchInsert(vector<int>& nums, int target) { int left = 0, right = nums.size() - 1; while (left <= right) { int mid = left + ((right - left) / 2); if (nums[mid] < target) left = mid + 1; else if (nums[mid] > target) right = mid - 1; else return mid; // 目标值等于数组中某一个元素 return middle; } // 数组中没有target,则分别处理如下三种情况 // 跳出循环后存在几种情况: // 1.left和right同时指向第一个位置,但还是大于target,right = 0-1 = -1,right+1就是第一个位置 // 2.left和right同时指向最后得位置,但nums[mid]<target,left++定位到,right+1得位置 //3.当left>right出循环后,right指向第一个小于target值的位置,将target插到right+1即可 return right + 1; // return left } };
-
给你一个按照非递减顺序排列的整数数组 nums,和一个目标值 target。请你找出给定目标值在数组中的开始位置和结束位置。
如果数组中不存在目标值 target,返回 [-1, -1]。
你必须设计并实现时间复杂度为 O(log n) 的算法解决此问题。
#思路
-
法一:双指针搜索
- left从左往右找target ,right从右往左找target
-
// 左右双指针找target class Solution { public: vector<int> searchRange(vector<int>& nums, int target) { if(nums.empty()) return {-1,-1}; int left = 0, right = nums.size() - 1; if( left <= right) { while(nums[left] < target && left < nums.size()-1 ) left++; while(nums[right] > target && right > 0) right--; } if(nums[left] != target) return {-1,-1}; return {left,right}; } };
- 情况一:
- target 在数组范围的右边或者左边,例如数组{3, 4, 5},target为2或者数组{3, 4, 5},target为6,此时应该返回{-1, -1}
- 情况二:
- target 在数组范围中,且数组中不存在target,例如数组{3,6,7},target为5,此时应该返回{-1, -1}
- 情况三:
给你一个非负整数 x
,计算并返回 x
的 算术平方根 。
由于返回类型是整数,结果只保留 整数部分 ,小数部分将被 舍去 。
注意:不允许使用任何内置指数函数和算符,例如 pow(x, 0.5)
或者 x ** 0.5
。
示例 1:
输入:x = 4 输出:2
示例 2:
输入:x = 8 输出:2 解释:8 的算术平方根是 2.82842..., 由于返回类型是整数,小数部分将被舍去。
二分查找的下界为 0,上界可以粗略地设定为 x。在二分查找的每一步中,我们只需要比较中间元素 mid²与 x 的大小关系,并通过比较的结果调整上下界的范围。
class Solution {
public:
int mySqrt(int x) {
/*可能出现x=0或1,所以取闭区间[0,x]*/
int left = 0, right = x;
while(left <= right){
int mid = left + (right - left)/2;
if ((long)mid*mid < x ) // 防止整型溢出,改为字节数更大的long型
left = mid + 1;
else if ((long)mid*mid > x)
right = mid - 1;
else
return mid; // 恰好能找到x开方的整数
}
// 跳出循环时right = left - 1,没有元素恰好平方为x,此时(right)² < x² < (left)²;
return right;
}
};
思路同上题
class Solution {
public:
bool isPerfectSquare(int num) {
int left = 0, right = num;
while (left <= right){
int mid = left + ((right - left)/2);
if ((long)mid*mid < num)
left = mid + 1;
else if ((long)mid*mid > num)
right = mid - 1;
else
return true;
}
return false;
}
};