Google OR-Tools(一) Get Start

本文介绍了最优问题的概念,详细讲解了Google OR-Tools的特点,包括跨平台性、面向问题的套件和开源开放性。同时,通过一个线性规划的Demo展示了如何使用OR-Tools建模和求解优化问题,强调了其对应用者数学抽象能力的要求。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1 最优问题

我们先回顾下最优问题的概念。所谓最优化,就是指在满足某些约束条件的前提下,使得指定的目标函数极大化或极小化的过程。在工业界很多场景都可以归结为一个最优问题,利用合适的最优算法可以极大地提升效率和减小人工成本。通常情况下,现实的优化问题可以抽象为一个非线性规划,即:
m i n i m i z e   f ( x ) s u b j e c t   t o   g i ( x ) ≤ 0    i = 1 , . . . , m h j ( x ) = 0    j = 1 , . . . , l x L ≤ x ≤ x U \begin{aligned} minimize \ &f(\mathsf{x})\\ subject\ to\ &g_i(\mathsf{x})\leq0\ \ i=1,...,m\\ &h_j(\mathsf{x})=0\ \ j=1,...,l\\ &\mathsf{x}^L\leq \mathsf{x} \leq \mathsf{x}^U \end{aligned} minimize subject to f(x)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值