求解传输问题(二) 初始化算法

这篇文章介绍两种TP问题的初始化算法:Northwest-Corner和Minimum-Cell-Cost算法
还是用前一篇文章中的案例作为例子:三个Supply结点,其供应量为:

仓库 库存(Supply)
1. 堪萨斯 150
2. 奥马哈 175
3. 得梅因 275
Total 600

三个Demand结点,其需求量为:

面粉厂 需求(Demand)
A. 芝加哥 200
B. 圣路易斯 100
C. 辛辛那提 300
Total 600

路径的单位花销:

A.芝加哥 B.圣路易斯 C.辛辛那提
1. 堪萨斯 $6 $8 $10
2. 奥马哈 $7 $11 $11
3. 得梅因 $4 $5 $12

根据上面的已知量,初始化TP表结构:
在这里插入图片描述

Northwest-Corner-Method

正如算法名所说,Northwest-Corner算法就是先分配最左上角的那个单元格,然后依次分配其他的空单元格,最终完成一个初始解。在这里例子里,我们先给单元格1A进行分配,分配的数量要在满足supply和demand约束条件下的最大值,也就是200和150的最小值,因此对于单元格1A,我们给它分配150;

接着我们需要给1A的相邻单元格进行分配,这里就是2A或者1B,但是因为1A的分配值已经达到了最大的Supply值150,1B无法分配任何值,所以只能对2A进行分配;对于2A,在Supply约束上,分配数量不能超过175,而在Demand约束上,则不能超过50(因为1A已经占用了150),所以只能给2A分配50;

同样的,第三次分配的可选单元格是2B,在Supply约束上,分配数量不能超过175-50=125,而在Demand约束上,则不能超过100,所以给2B分配数量是100;第四次分配是给2C分配25,第五次分配是给3C分配275;五次分配后,所有的Demand和Supply约束都已达到,那么就产生了一个可行解。

下面的图展示了算法的分配过程:
在这里插入图片描述
初始解:
x 1 A = 150 x 2 A = 50 x 2 B = 100 x 2 C = 25 x 3 C = 275 \begin{aligned} x_{1A}&=150 \\ x_{2A}&=50 \\ x_{2B}&=100 \\ x_{2C}&=25 \\ x_{3C}&=275 \end{aligned} x

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值