机器学习
文章平均质量分 95
苏晨星
现就读于国防科技大学,Datawhale正式成员,公共安全大数据研究所成员。
展开
-
day7-案例(幸福感预测)详解
目录思路理解一、案例资料1、背景介绍2、数据信息3、评价指标二、第三方包准备三、数据导入及预处理1、数据导入2、数据预处理2.1、异常值处理2.2、数据増广四、特征建模1、选择263维原始特征进行建模1.1、lightGBM1.2、xgboost1.3、RandomForestRegressor随机森林1.4、GradientBoostingRegressor梯度提升决策树1.5、ExtraTreesRegressor 极端随机森林回归1.6、集成建模-stack22、选择49维重要特征进行建模2.1、li原创 2021-08-28 20:36:22 · 1196 阅读 · 1 评论 -
集成学习学习总结
目录心得体会一、思维导图1、数学基础2、回归问题3、分类问题4、集成学习5、Bagging6、Boosting7、Stacking二、辨析集成学习三种模型心得体会参加了开源学习组织datawhale的组队学习,圆满完成集成学习的任务,也带领组员一起坚持了下来,真正领略到机器学习的魅力,写这篇csdn总结一下我所学到的知识,以便后续巩固学习。在这里谈一下我的感悟:在集成学习的学习中,第一次实践了相关的完整案例,解决给出的实际问题,带入到情景中处理数据,利用集成学习的模型与方法得出预测的相关结论。一原创 2021-08-28 18:09:32 · 990 阅读 · 0 评论 -
day08-案例(蒸汽量预测)与集成学习模型总结
day08-集成学习案例(幸福感预测、蒸汽量预测)目录day08-集成学习案例(幸福感预测、蒸汽量预测)心得体会思路理解案例一(幸福感预测):案例二(蒸汽量预测):心得体会开源学习组织datawhale的组队学习第八天,学习了两个集成学习的案例,体会到对数据的处理与认知才是最重要的,整理了案例思路理解,复现了结果。在这里感谢datawhale开源社区的小伙伴们给予的学习帮助,今后的学习也要一样加油呀提示:以下是本篇文章正文内容,下面案例以及设计到的知识点均为datawhale开源组织提供思原创 2021-08-28 00:47:45 · 512 阅读 · 0 评论 -
day7-Stacking与案例(幸福感预测)
day7-Stacking(相关案例代码理解分享)目录day7-Stacking(相关案例代码理解分享)心得体会前言一、Blending集成学习算法1、算法原理2、相关案例二、Stacking集成学习算法总结心得体会开源学习组织datawhale的组队学习第二天,学习了集成学习方法的最后一个成员–Stacking,我们可以对三个GBDT模型进行Stacking融合,那么每个GBDT模型都可以看做一个基模型,这样的话,这三个GBDT模型可以标识为mode1、mode2、mode3,利用五折的方法,原创 2021-08-26 14:13:59 · 820 阅读 · 0 评论 -
day6-Boosting
day6-Boosting目录day6-Boosting心得体会前言一、Boosting方法的基本思路二、Adaboost算法1、Adaboost基本原理2、使用sklearn对Adaboost算法进行建模:三、前向分步算法四、梯度提升决策树(GBDT)1、基本原理2、使用sklearn来使用GBDT五、XGBoost算法1、基本原理2、XGBoost系统讲解3、XGBoost代码示例(1)分类案例(2)回归案例(3)XGBoost调参(结合sklearn网格搜索)六、LightGBM算法1、简介2、Li原创 2021-08-25 14:37:03 · 254 阅读 · 0 评论 -
day5-投票法与Bagging(相关案例代码理解分享)
day5-投票法与Bagging(相关案例代码理解分享)目录day5-投票法与Bagging(相关案例代码理解分享)心得体会前言一、投票法1、投票法的原理2、投票法的案例分析2.1 基础2.2 完整示例二、bagging1、bagging的原理2、bagging的应用3、案例分析三、作业(1)什么是bootstraps(2)bootstraps与bagging的联系(3)什么是bagging(4)随机森林与bagging的联系与区别(5)使用偏差与方差理论阐述为什么bagging能提升模型的预测精度(6)原创 2021-08-23 10:30:19 · 546 阅读 · 0 评论 -
day4-分类问题(相关案例代码理解分享)
day4-分类问题(相关案例代码理解分享)https://blog.csdn.net/Codewith_jing/article/details/118927246目录day4-分类问题(相关案例代码理解分享)心得体会前言一、回归、分类、无监督学习1.引入相关科学计算包2. 回归连续型变量问题2.1 导入并查看数据集2.2 画散点图三、作业(1)请详细阐述线性回归模型得最小二乘法表达(2)在线性回归模型中,极大似然估计与最小二乘估计有什么联系与区别吗(3)为什么多项式回归在实际问题中的表现经常不是很好总原创 2021-08-22 13:52:49 · 289 阅读 · 0 评论 -
day3-偏差和方差理论(相关案例代码理解分享)
day3-偏差和方差理论(相关案例代码理解分享)目录day3-偏差和方差理论(相关案例代码理解分享)心得体会前言一、优化基础模型1、训练均方误差与测试均方误差:2、偏差-方差的权衡:3、特征提取:==1、训练误差修正:====2、交叉验证:====最优子集选择:====向前逐步选择:==4、压缩估计(正则化):==岭回归(L2正则化的例子):====Lasso回归(L1正则化的例子):==5、降维:==主成分分析(PCA):==6、案例==(1) 特征提取的实例:向前逐步回归====(2)岭回归实例分享=原创 2021-08-21 00:24:25 · 349 阅读 · 0 评论 -
day2-机器学习的基础模型回顾(相关案例代码理解分享)
机器学习的数学基础(相关案例代码理解分享)目录:day1-机器学习的数学基础(相关案例代码理解分享)day2-机器学习基础模型回顾day3-集成学习之投票法与baggingday4-集成学习之boostingday5-集成学习之blending与stackingday6-集成学习之案例分享文章目录机器学习的数学基础(相关案例代码理解分享)摘要一、梯度下降法1.概念简介2.代码示例二、牛顿迭代法1.概念简介2.代码示例三、pi的估计问题1.问题阐述2.代码示例四、电子元件寿命问题1.问题阐述原创 2021-08-19 17:48:58 · 253 阅读 · 0 评论 -
day1-机器学习的数学基础(相关案例代码理解分享)
CH1-机器学习的数学基础目录:CH1-机器学习的数学基础CH2-机器学习基础模型回顾CH3-集成学习之投票法与baggingCH4-集成学习之boostingCH5-集成学习之blending与stackingCH6-集成学习之案例分享文章目录CH1-机器学习的数学基础摘要一、梯度下降法1.概念简介2.代码示例二、牛顿迭代法1.概念简介2.代码示例三、pi的估计问题1.问题阐述2.代码示例四、电子元件寿命问题1.问题阐述2.代码示例五、三门问题1.问题阐述2.代码示例总结摘要原创 2021-08-17 20:45:05 · 200 阅读 · 0 评论