bzoj2982 combination

题目

一句话题意,求解C(n,m)%10007的值。

我们知道,10007是一个质数,那么除一个数就相当于乘上它的逆元,这样就可以预处理阶乘O(1)做了。

但是,这样有个问题,n大于了10007怎么办?显然都不是0呀。

我们有办法(不是我想出来的,Lucas定理就可以用了。

C(n,m)=C(n/p,m/p)*C(n%p,m%p)%p

然后递归就好了。

#include<bits/stdc++.h>
#define mod 10007
using namespace std;
long long fac[mod+5],inv[mod+5],fac_inv[mod+5],n,m,T;
inline void init()
{
    fac[0]=1;
    for(long long i=1;i<mod;i++)fac[i]=fac[i-1]*i%mod;
    inv[1]=1;
    for(long long i=2;i<mod;i++)inv[i]=(mod-mod/i)*inv[mod%i]%mod;
    fac_inv[0]=inv[1];
    for(long long i=1;i<mod;i++)fac_inv[i]=fac_inv[i-1]*inv[i]%mod;
}
inline long long C(long long n,long long m)
{
    if(n<m)return 0;
    return fac[n]*fac_inv[m]%mod*fac_inv[n-m]%mod;
}
inline long long Lucas(long long n,long long m)
{
    if(n<m)return 0;
    if(n==0||m==0)return 1; 
    return Lucas(n/mod,m/mod)*C(n%mod,m%mod)%mod;
}
inline char nc()
{
    static char buf[100000],*p1=buf,*p2=buf;
    return p1==p2&&(p2=(p1=buf)+fread(buf,1,100000,stdin),p1==p2)?EOF:*p1++;
}
inline long long read()
{
    long long x=0,b=1;
    char c=nc();
    for(;!(c<='9'&&c>='0');c=nc())if(c=='-')b=-1;
    for(;c<='9'&&c>='0';c=nc())x=x*10+c-'0';
    return x*b;
}
inline void write(long long x)
{
    if(x==0)putchar('0');
    else
    {
        char buf[15];
        long long len=0;
        if(x<0)putchar('-'),x=-x;
        while(x)buf[++len]=x%10+'0',x/=10;
        for(long long i=len;i>=1;i--)putchar(buf[i]);
    }
    putchar('\n');
}
int main()
{
    freopen("in.txt","r",stdin);
    init();
    T=read();
    while(T--)
    {
        n=read(),m=read();
        write(Lucas(n,m));
    }
    return 0;
} 

一个模板。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值