一句话题意,求解C(n,m)%10007的值。
我们知道,10007是一个质数,那么除一个数就相当于乘上它的逆元,这样就可以预处理阶乘O(1)做了。
但是,这样有个问题,n大于了10007怎么办?显然都不是0呀。
我们有办法(不是我想出来的,Lucas定理就可以用了。
C(n,m)=C(n/p,m/p)*C(n%p,m%p)%p
然后递归就好了。
#include<bits/stdc++.h>
#define mod 10007
using namespace std;
long long fac[mod+5],inv[mod+5],fac_inv[mod+5],n,m,T;
inline void init()
{
fac[0]=1;
for(long long i=1;i<mod;i++)fac[i]=fac[i-1]*i%mod;
inv[1]=1;
for(long long i=2;i<mod;i++)inv[i]=(mod-mod/i)*inv[mod%i]%mod;
fac_inv[0]=inv[1];
for(long long i=1;i<mod;i++)fac_inv[i]=fac_inv[i-1]*inv[i]%mod;
}
inline long long C(long long n,long long m)
{
if(n<m)return 0;
return fac[n]*fac_inv[m]%mod*fac_inv[n-m]%mod;
}
inline long long Lucas(long long n,long long m)
{
if(n<m)return 0;
if(n==0||m==0)return 1;
return Lucas(n/mod,m/mod)*C(n%mod,m%mod)%mod;
}
inline char nc()
{
static char buf[100000],*p1=buf,*p2=buf;
return p1==p2&&(p2=(p1=buf)+fread(buf,1,100000,stdin),p1==p2)?EOF:*p1++;
}
inline long long read()
{
long long x=0,b=1;
char c=nc();
for(;!(c<='9'&&c>='0');c=nc())if(c=='-')b=-1;
for(;c<='9'&&c>='0';c=nc())x=x*10+c-'0';
return x*b;
}
inline void write(long long x)
{
if(x==0)putchar('0');
else
{
char buf[15];
long long len=0;
if(x<0)putchar('-'),x=-x;
while(x)buf[++len]=x%10+'0',x/=10;
for(long long i=len;i>=1;i--)putchar(buf[i]);
}
putchar('\n');
}
int main()
{
freopen("in.txt","r",stdin);
init();
T=read();
while(T--)
{
n=read(),m=read();
write(Lucas(n,m));
}
return 0;
}
一个模板。