混沌多项式展开(Polynomial Chaos Expansions,PCE)- 待更

本文探讨了多项式混沌展开(Polynomial Chaos Expansions)在代理模型方法中的应用,这是一种能有效描述任意分布随机变量不确定性的技术。通过基于随机展开的不确定性分析,该方法在结构可靠性分析等领域展现出巨大潜力。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

polynomial chaos expansions 能够精确描述任意分布形式的随机变量的随机性,是一种非常有效的基于随机展开的不确定性分析方法[1],主要用于“代理模型方法”[2],代理模型解释见代理模型(百度)以及Surrogate model(WIKI)。

 

这个问题,暂时搁置,后续再学习。

理解其在代理模型的使用即可!

 

References

  1. PCE-知乎:https://zhuanlan.zhihu.com/p/40853397
  2. Nora Lüthen, Stefano Marelli, and Bruno Sudret,Sparse Polynomial Chaos Expansions: Literature Survey and Benchmark
  3. Géraud Blatman, Bruno Sudret ,Sparse polynomial chaos expansions and adaptive stochastic finite elements using a regression approach
  4. Stefano Marelli, Bruno Sudret,  Adaptive designs and sparse polynomial chaos expansions for structural reliability analysis
  5. Polynomial chaos expansion
  6. Bruno Sudret, Global sensitivity analysis using polynomial chaos expansions. Reliability Engineering and System Safety 93 (2008) 964–979

 

 

 

### 混沌多项式展开的概念与实现 混沌多项式展开Polynomial Chaos Expansion, PCE)是一种用于不确定性量化的强大数学工具。它通过将随机输入变量表示为一组正交多项式的线性组合来逼近系统的响应[^1]。这种方法的核心优势在于能够在不显著增加计算成本的情况下,有效地捕捉系统行为中的不确定性和变异性。 #### 正交多项式的选择 PCE 的关键是选择合适的正交多项式基底。常见的正交多项式包括: - **Hermite 多项式**:适用于高斯分布的随机变量。 - **Legendre 多项式**:适用于均匀分布的随机变量。 - **Laguerre 多项式**:适用于指数分布的随机变量。 - **Charlier 多项式**:适用于离散型泊松分布的随机变量。 每种正交多项式都与其对应的权重函数和定义域相匹配,从而确保在给定的概率空间内的正交性[^2]。 #### PC 系数的计算 为了构建 PCE 模型,需要确定每一阶正交多项式的系数。常用的系数计算方法有: 1. **投影法**:通过对目标函数进行内积运算得到系数。此方法通常涉及数值积分技术,如 Gauss-Hermite 积分。 2. **最小二乘回归**:当样本数量有限时,可以通过拟合样本来估算系数。 以下是基于 Matlab 实现的一个简单例子: ```matlab % 定义基本参数 order = 3; % 展开阶次 num_samples = 50; % 样本点数目 % 高斯随机变量及其采样 mu = 0; sigma = 1; xi = normrnd(mu, sigma, num_samples, 1); % 计算 Hermite 多项式 hermite_poly = @(x,n) exp(-x.^2/2).*polyval(hermiteH(n), x); basis_functions = arrayfun(@(n) hermite_poly(xi, n)', 0:order, 'UniformOutput', false); basis_matrix = cell2mat(basis_functions); % 构造目标函数 y=f(x),这里假设 f(x)=sin(x)+cos(x) y = sin(xi) + cos(xi); % 使用最小二乘法求解系数 coefficients = basis_matrix \ y; % 显示结果 disp('PCE Coefficients:'); disp(coefficients'); ``` 这段代码实现了对一个简单的非线性函数 \(f(\xi) = \sin(\xi) + \cos(\xi)\) 的三阶 Hermite 多项式展开,并通过最小二乘法估算了相应的系数[^3]。 #### Schmidt 正交化的作用 Schmidt 正交化过程被用来生成一组新的正交多项式,这尤其对于任意分布的随机变量非常有用。具体来说,在某些情况下,标准的正交多项式可能无法满足需求,因此需要自动生成适合当前分布的多项式集合[^4]。 --- ###
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值