多项式混沌展开法

本文介绍了多项式混沌展开在描述随机系统中的应用,通过正交多项式构建随机空间,处理不确定性。重点讲解了如何将标准正态分布转化为Hermite多项式,用于工程中的功能和响应函数建模,以及其实现过程中的关键步骤和计算优势。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

简介及基本原理

多项式混沌采用多项式基组合成随机空间,来描述和传播随机变量的不确定性。本质是利用正交多项式的优异性能,通过随机变量的输入到响应的映射过程建立代理模型。该方法收敛性好,使用方便,能较好的适用于复杂的系统。但是该方法理论难度高,多元情况下正交多项式形式复杂,难以程序化、模块化。因此,得到便于 程序实现的多项式通项形式,也成为了现研究的重点。
对于任意的随机变量,只要它的概率密度函数(PDF)在这里插入图片描述满足:
在这里插入图片描述
则该变量能表示为一系列独立的标准随机变量的函数。对于大部分机械结构问题,都满足这种特性。内积空间中,给定一组完备正交基,给定的任意向量都可以由这组正交基表示。当向量为函数时,也可由一组正交函数基表示出来。
考虑随机变量的分布形式为标准正态分布,采用与之对应的Hermite正交多项式基Hn,其两个正交多项式内积为:
在这里插入图片描述
由正交多项式性质,其满足:
在这里插入图片描述
其中,fx为权函数,需满足非负可积。这些多项式构成了一组标准的正交函数基,因此任意给定函数R都可以展开为如下形式:
在这里插入图片描述

Ci为待定系数。
在结构可靠度分析中R可以代替功能函数,在不确定性传播中R可以代替响应函数。
Hermite正交多项式可以由下式给出:
在这里插入图片描述
例如,当为二维随机变量时,Hermite多项式为如下形式:
在这里插入图片描述
由此,任意给定函数写成:
请添加图片描述
在实际工程中我们将其取到有限阶p阶,则
在这里插入图片描述
其中,
在这里插入图片描述,n为随机变量的维数。
这样就建立好了所需函数的代理模型,我们可以根据各个输入和响应代入该模型,就可以求得改模型的各项系数。
当我们处理不确定传播问题时,可以利用各种抽样方法得到响应的不确定性参量,因为代理模型为多项式组合,计算成本低。

程序流程

在这里插入图片描述

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值