hadoop job yarn 命令

hadoop 专栏收录该内容
34 篇文章 1 订阅
hadoop命令行 与job相关的:
命令行工具 • 
1.查看 Job 信息:
hadoop job -list 
2.杀掉 Job: 
hadoop  job –kill  job_id
3.指定路径下查看历史日志汇总:
hadoop job -history output-dir 
4.作业的更多细节: 
hadoop job -history all output-dir 
5.打印map和reduce完成百分比和所有计数器:
hadoop job –status job_id 
6.杀死任务。被杀死的任务不会不利于失败尝试:
hadoop jab -kill-task <task-id> 
7.使任务失败。被失败的任务会对失败尝试不利:

Hadoop job  -fail-task <task-id>

YARN命令行:

YARN命令是调用bin/yarn脚本文件,如果运行yarn脚本没有带任何参数,则会打印yarn所有命令的描述。

使用: yarn [--config confdir] COMMAND [--loglevel loglevel] [GENERIC_OPTIONS] [COMMAND_OPTIONS]
YARN有一个参数解析框架,采用解析泛型参数以及运行类。


命令参数 描述
--config confdir 指定一个默认的配置文件目录,默认值是: ${HADOOP_PREFIX}/conf.
--loglevel loglevel 重载Log级别。有效的日志级别包含:FATAL, ERROR, WARN, INFO, DEBUG, and TRACE。默认是INFO。
GENERIC_OPTIONS YARN支持表A的通用命令项。
COMMAND COMMAND_OPTIONS YARN分为用户命令和管理员命令。


表A:

通用项 Description
-archives <comma separated list of archives> 用逗号分隔计算中未归档的文件。 仅仅针对JOB。
-conf <configuration file> 制定应用程序的配置文件。
-D <property>=<value> 使用给定的属性值。
-files <comma separated list of files> 用逗号分隔的文件,拷贝到Map reduce机器,仅仅针对JOB
-jt <local> or <resourcemanager:port> 指定一个ResourceManager. 仅仅针对JOB。
-libjars <comma seperated list of jars> 将用逗号分隔的jar路径包含到classpath中去,仅仅针对JOB。



用户命令:
对于hadoop集群用户很有用的命令:

application
使用: yarn application [options]

命令选项 描述
-appStates <States> 使用-list命令,基于应用程序的状态来过滤应用程序。如果应用程序的状态有多个,用逗号分隔。 有效的应用程序状态包含
如下: ALL, NEW, NEW_SAVING, SUBMITTED, ACCEPTED, RUNNING, FINISHED, FAILED, KILLED
-appTypes <Types> 使用-list命令,基于应用程序类型来过滤应用程序。如果应用程序的类型有多个,用逗号分隔。
-list 从RM返回的应用程序列表,使用-appTypes参数,支持基于应用程序类型的过滤,使用-appStates参数,支持对应用程序状态的过滤。
-kill <ApplicationId> kill掉指定的应用程序。
-status <ApplicationId> 打印应用程序的状态。

示例1:

[html]  view plain  copy
  1. [hduser@hadoop0 bin]$ ./yarn application -list -appStates ACCEPTED  
  2. 15/08/10 11:48:43 INFO client.RMProxy: Connecting to ResourceManager at hadoop1/10.0.1.41:8032  
  3. Total number of applications (application-types: [] and states: [ACCEPTED]):1  
  4. Application-Id                  Application-Name Application-Type User   Queue   State    Final-State Progress Tracking-URL  
  5. application_1438998625140_1703  MAC_STATUS   MAPREDUCE    hduser default ACCEPTED UNDEFINED   0%       N/A  

示例2:
[html]  view plain  copy
  1. [hduser@hadoop0 bin]$ ./yarn application -list  
  2. 15/08/10 11:43:01 INFO client.RMProxy: Connecting to ResourceManager at hadoop1/10.0.1.41:8032  
  3. Total number of applications (application-types: [] and states: [SUBMITTED, ACCEPTED, RUNNING]):1  
  4. Application-Id                 Application-Name Application-Type  User   Queue   State    Final-State   Progress Tracking-URL  
  5. application_1438998625140_1701 MAC_STATUS   MAPREDUCE     hduser default ACCEPTED UNDEFINED 0%   N/A  

示例3:
[html]  view plain  copy
  1. [hduser@hadoop0 bin]$ ./yarn application -kill application_1438998625140_1705  
  2. 15/08/10 11:57:41 INFO client.RMProxy: Connecting to ResourceManager at hadoop1/10.0.1.41:8032  
  3. Killing application application_1438998625140_1705  
  4. 15/08/10 11:57:42 INFO impl.YarnClientImpl: Killed application application_1438998625140_1705  


applicationattempt
使用: yarn applicationattempt [options]

命令选项 描述
-help 帮助
-list <ApplicationId> 获取到应用程序尝试的列表,其返回值ApplicationAttempt-Id 等于 <Application Attempt Id>
-status <Application Attempt Id> 打印应用程序尝试的状态。
打印应用程序尝试的报告。
示例1:
[html]  view plain  copy
  1. [hadoop@hadoopcluster78 bin]$ yarn applicationattempt -list application_1437364567082_0106  
  2. 15/08/10 20:58:28 INFO client.RMProxy: Connecting to ResourceManager at hadoopcluster79/10.0.1.79:8032  
  3. Total number of application attempts :1  
  4. ApplicationAttempt-Id                  State    AM-Container-Id                        Tracking-URL  
  5. appattempt_1437364567082_0106_000001   RUNNING  container_1437364567082_0106_01_000001 http://hadoopcluster79:8088/proxy/application_1437364567082_0106/  

示例2:

[html]  view plain  copy
  1. [hadoop@hadoopcluster78 bin]$ yarn applicationattempt -list application_1437364567082_0106  
  2. 15/08/10 20:58:28 INFO client.RMProxy: Connecting to ResourceManager at hadoopcluster79/10.0.1.79:8032  
  3. Total number of application attempts :1  
  4. ApplicationAttempt-Id                  State    AM-Container-Id                        Tracking-URL  
  5. appattempt_1437364567082_0106_000001   RUNNING  container_1437364567082_0106_01_000001 http://hadoopcluster79:8088/proxy/application_1437364567082_0106/  


classpath 使用: yarn classpath
打印需要得到Hadoop的jar和所需要的lib包路径
[html]  view plain  copy
  1. [hadoop@hadoopcluster78 bin]$ yarn classpath  
  2. /home/hadoop/apache/hadoop-2.4.1/etc/hadoop:/home/hadoop/apache/hadoop-2.4.1/etc/hadoop:/home/hadoop/apache/hadoop-2.4.1/etc/hadoop:/home/hadoop/apache/hadoop-2.4.1/share/hadoop/common/lib/*:/home/hadoop/apache/hadoop-2.4.1/share/hadoop/common/*:/home/hadoop/apache/hadoop-2.4.1/share/hadoop/hdfs:/home/hadoop/apache/hadoop-2.4.1/share/hadoop/hdfs/lib/*:/home/hadoop/apache/hadoop-2.4.1/share/hadoop/hdfs/*:/home/hadoop/apache/hadoop-2.4.1/share/hadoop/yarn/lib/*:/home/hadoop/apache/hadoop-2.4.1/share/hadoop/yarn/*:/home/hadoop/apache/hadoop-2.4.1/share/hadoop/mapreduce/lib/*:/home/hadoop/apache/hadoop-2.4.1/share/hadoop/mapreduce/*:/home/hadoop/apache/hadoop-2.4.1/contrib/capacity-scheduler/*.jar:/home/hadoop/apache/hadoop-2.4.1/share/hadoop/yarn/*:/home/hadoop/apache/hadoop-2.4.1/share/hadoop/yarn/lib/*  

container
使用: yarn container [options]

命令选项
描述
-help
帮助
-list <Application Attempt Id>
应用程序尝试的Containers列表
-status <ContainerId>
打印Container的状态
打印container(s)的报告
示例1:

[html]  view plain  copy
  1. [hadoop@hadoopcluster78 bin]$ yarn container -list appattempt_1437364567082_0106_01  
  2. 15/08/10 20:45:45 INFO client.RMProxy: Connecting to ResourceManager at hadoopcluster79/10.0.1.79:8032  
  3. Total number of containers :25  
  4.                   Container-Id            Start Time             Finish Time                   State                    Host                                LOG-URL  
  5. container_1437364567082_0106_01_000028         1439210458659                       0                 RUNNING    hadoopcluster83:37140   //hadoopcluster83:8042/node/containerlogs/container_1437364567082_0106_01_000028/hadoop  
  6. container_1437364567082_0106_01_000016         1439210314436                       0                 RUNNING    hadoopcluster84:43818   //hadoopcluster84:8042/node/containerlogs/container_1437364567082_0106_01_000016/hadoop  
  7. container_1437364567082_0106_01_000019         1439210338598                       0                 RUNNING    hadoopcluster83:37140   //hadoopcluster83:8042/node/containerlogs/container_1437364567082_0106_01_000019/hadoop  
  8. container_1437364567082_0106_01_000004         1439210314130                       0                 RUNNING    hadoopcluster82:48622   //hadoopcluster82:8042/node/containerlogs/container_1437364567082_0106_01_000004/hadoop  
  9. container_1437364567082_0106_01_000008         1439210314130                       0                 RUNNING    hadoopcluster82:48622   //hadoopcluster82:8042/node/containerlogs/container_1437364567082_0106_01_000008/hadoop  
  10. container_1437364567082_0106_01_000031         1439210718604                       0                 RUNNING    hadoopcluster83:37140   //hadoopcluster83:8042/node/containerlogs/container_1437364567082_0106_01_000031/hadoop  
  11. container_1437364567082_0106_01_000020         1439210339601                       0                 RUNNING    hadoopcluster83:37140   //hadoopcluster83:8042/node/containerlogs/container_1437364567082_0106_01_000020/hadoop  
  12. container_1437364567082_0106_01_000005         1439210314130                       0                 RUNNING    hadoopcluster82:48622   //hadoopcluster82:8042/node/containerlogs/container_1437364567082_0106_01_000005/hadoop  
  13. container_1437364567082_0106_01_000013         1439210314435                       0                 RUNNING    hadoopcluster84:43818   //hadoopcluster84:8042/node/containerlogs/container_1437364567082_0106_01_000013/hadoop  
  14. container_1437364567082_0106_01_000022         1439210368679                       0                 RUNNING    hadoopcluster84:43818   //hadoopcluster84:8042/node/containerlogs/container_1437364567082_0106_01_000022/hadoop  
  15. container_1437364567082_0106_01_000021         1439210353626                       0                 RUNNING    hadoopcluster83:37140   //hadoopcluster83:8042/node/containerlogs/container_1437364567082_0106_01_000021/hadoop  
  16. container_1437364567082_0106_01_000014         1439210314435                       0                 RUNNING    hadoopcluster84:43818   //hadoopcluster84:8042/node/containerlogs/container_1437364567082_0106_01_000014/hadoop  
  17. container_1437364567082_0106_01_000029         1439210473726                       0                 RUNNING    hadoopcluster80:42366   //hadoopcluster80:8042/node/containerlogs/container_1437364567082_0106_01_000029/hadoop  
  18. container_1437364567082_0106_01_000006         1439210314130                       0                 RUNNING    hadoopcluster82:48622   //hadoopcluster82:8042/node/containerlogs/container_1437364567082_0106_01_000006/hadoop  
  19. container_1437364567082_0106_01_000003         1439210314129                       0                 RUNNING    hadoopcluster82:48622   //hadoopcluster82:8042/node/containerlogs/container_1437364567082_0106_01_000003/hadoop  
  20. container_1437364567082_0106_01_000015         1439210314436                       0                 RUNNING    hadoopcluster84:43818   //hadoopcluster84:8042/node/containerlogs/container_1437364567082_0106_01_000015/hadoop  
  21. container_1437364567082_0106_01_000009         1439210314130                       0                 RUNNING    hadoopcluster82:48622   //hadoopcluster82:8042/node/containerlogs/container_1437364567082_0106_01_000009/hadoop  
  22. container_1437364567082_0106_01_000030         1439210708467                       0                 RUNNING    hadoopcluster83:37140   //hadoopcluster83:8042/node/containerlogs/container_1437364567082_0106_01_000030/hadoop  
  23. container_1437364567082_0106_01_000012         1439210314435                       0                 RUNNING    hadoopcluster84:43818   //hadoopcluster84:8042/node/containerlogs/container_1437364567082_0106_01_000012/hadoop  
  24. container_1437364567082_0106_01_000027         1439210444354                       0                 RUNNING    hadoopcluster84:43818   //hadoopcluster84:8042/node/containerlogs/container_1437364567082_0106_01_000027/hadoop  
  25. container_1437364567082_0106_01_000026         1439210428514                       0                 RUNNING    hadoopcluster83:37140   //hadoopcluster83:8042/node/containerlogs/container_1437364567082_0106_01_000026/hadoop  
  26. container_1437364567082_0106_01_000017         1439210314436                       0                 RUNNING    hadoopcluster84:43818   //hadoopcluster84:8042/node/containerlogs/container_1437364567082_0106_01_000017/hadoop  
  27. container_1437364567082_0106_01_000001         1439210306902                       0                 RUNNING    hadoopcluster80:42366   //hadoopcluster80:8042/node/containerlogs/container_1437364567082_0106_01_000001/hadoop  
  28. container_1437364567082_0106_01_000002         1439210314129                       0                 RUNNING    hadoopcluster82:48622   //hadoopcluster82:8042/node/containerlogs/container_1437364567082_0106_01_000002/hadoop  
  29. container_1437364567082_0106_01_000025         1439210414171                       0                 RUNNING    hadoopcluster83:37140   //hadoopcluster83:8042/node/containerlogs/container_1437364567082_0106_01_000025/hadoop  

示例2:

[html]  view plain  copy
  1. [hadoop@hadoopcluster78 bin]$ yarn container -status container_1437364567082_0105_01_000020  
  2. 15/08/10 20:28:00 INFO client.RMProxy: Connecting to ResourceManager at hadoopcluster79/10.0.1.79:8032  
  3. Container Report :  
  4.     Container-Id : container_1437364567082_0105_01_000020  
  5.     Start-Time : 1439208779842  
  6.     Finish-Time : 0  
  7.     State : RUNNING  
  8.     LOG-URL : //hadoopcluster83:8042/node/containerlogs/container_1437364567082_0105_01_000020/hadoop  
  9.     Host : hadoopcluster83:37140  
  10.     Diagnostics : null  

jar 使用: yarn jar <jar> [mainClass] args...
运行jar文件,用户可以将写好的YARN代码打包成jar文件,用这个命令去运行它。


logs
使用: yarn logs -applicationId <application ID> [options]
注:应用程序没有完成,该命令是不能打印日志的。


命令选项
描述
-applicationId <application ID>
指定应用程序ID,应用程序的ID可以在yarn.resourcemanager.webapp.address配置的路径查看(即:ID)
-appOwner <AppOwner>
应用的所有者(如果没有指定就是当前用户)应用程序的ID可以在yarn.resourcemanager.webapp.address配置的路径查看(即:User)
-containerId <ContainerId>
Container Id
-help
帮助
-nodeAddress <NodeAddress>
节点地址的格式:nodename:port (端口是配置文件中:yarn.nodemanager.webapp.address参数指定)
转存container的日志。
示例:
[html]  view plain  copy
  1. [hadoop@hadoopcluster78 bin]$ yarn logs -applicationId application_1437364567082_0104  -appOwner hadoop  
  2. 15/08/10 17:59:19 INFO client.RMProxy: Connecting to ResourceManager at hadoopcluster79/10.0.1.79:8032  
  3. Container: container_1437364567082_0104_01_000003 on hadoopcluster82_48622  
  4. ============================================================================  
  5. LogType: stderr  
  6. LogLength: 0  
  7. Log Contents:  
  8. LogType: stdout  
  9. LogLength: 0  
  10. Log Contents:  
  11. LogType: syslog  
  12. LogLength: 3673  
  13. Log Contents:  
  14. 2015-08-10 17:24:01,565 WARN [main] org.apache.hadoop.conf.Configuration: job.xml:an attempt to override final parameter: mapreduce.job.end-notification.max.retry.interval;  Ignoring.  
  15. 2015-08-10 17:24:01,580 WARN [main] org.apache.hadoop.conf.Configuration: job.xml:an attempt to override final parameter: mapreduce.job.end-notification.max.attempts;  Ignoring.  
  16. 。。。。。。此处省略N万个字符  
  17. // 下面的命令,根据APP的所有者查看LOG日志,因为application_1437364567082_0104任务我是用hadoop用户启动的,所以打印的是如下信息:  
  18. [hadoop@hadoopcluster78 bin]$ yarn logs -applicationId application_1437364567082_0104  -appOwner root  
  19. 15/08/10 17:59:25 INFO client.RMProxy: Connecting to ResourceManager at hadoopcluster79/10.0.1.79:8032  
  20. Logs not available at /tmp/logs/root/logs/application_1437364567082_0104  
  21. Log aggregation has not completed or is not enabled.  

node
使用: yarn node [options]

命令选项
描述
-all
所有的节点,不管是什么状态的。
-list
列出所有RUNNING状态的节点。支持-states选项过滤指定的状态,节点的状态包
含:NEW,RUNNING,UNHEALTHY,DECOMMISSIONED,LOST,REBOOTED。支持--all显示所有的节点。
-states <States>
和-list配合使用,用逗号分隔节点状态,只显示这些状态的节点信息。
-status <NodeId>
打印指定节点的状态。
示例1:
[html]  view plain  copy
  1. [hadoop@hadoopcluster78 bin]$ ./yarn node -list -all  
  2. 15/08/10 17:34:17 INFO client.RMProxy: Connecting to ResourceManager at hadoopcluster79/10.0.1.79:8032  
  3. Total Nodes:4  
  4.          Node-Id         Node-State Node-Http-Address   Number-of-Running-Containers  
  5. hadoopcluster82:48622           RUNNING hadoopcluster82:8042                               0  
  6. hadoopcluster84:43818           RUNNING hadoopcluster84:8042                               0  
  7. hadoopcluster83:37140           RUNNING hadoopcluster83:8042                               0  
  8. hadoopcluster80:42366           RUNNING hadoopcluster80:8042                               0  

示例2:
[html]  view plain  copy
  1. [hadoop@hadoopcluster78 bin]$ ./yarn node -list -states RUNNING  
  2. 15/08/10 17:39:55 INFO client.RMProxy: Connecting to ResourceManager at hadoopcluster79/10.0.1.79:8032  
  3. Total Nodes:4  
  4.          Node-Id         Node-State Node-Http-Address   Number-of-Running-Containers  
  5. hadoopcluster82:48622           RUNNING hadoopcluster82:8042                               0  
  6. hadoopcluster84:43818           RUNNING hadoopcluster84:8042                               0  
  7. hadoopcluster83:37140           RUNNING hadoopcluster83:8042                               0  
  8. hadoopcluster80:42366           RUNNING hadoopcluster80:8042                               0  

示例3:

[html]  view plain  copy
  1. [hadoop@hadoopcluster78 bin]$ ./yarn node -status hadoopcluster82:48622  
  2. 15/08/10 17:52:52 INFO client.RMProxy: Connecting to ResourceManager at hadoopcluster79/10.0.1.79:8032  
  3. Node Report :  
  4.     Node-Id : hadoopcluster82:48622  
  5.     Rack : /default-rack  
  6.     Node-State : RUNNING  
  7.     Node-Http-Address : hadoopcluster82:8042  
  8.     Last-Health-Update : 星期一 10/八月/15 05:52:09:601CST  
  9.     Health-Report :  
  10.     Containers : 0  
  11.     Memory-Used : 0MB  
  12.     Memory-Capacity : 10240MB  
  13.     CPU-Used : 0 vcores  
  14.     CPU-Capacity : 8 vcores  

打印节点的报告。


queue
使用: yarn queue [options]

命令选项
描述
-help
帮助
-status <QueueName>
打印队列的状态
打印队列信息。


version
使用: yarn version
打印hadoop的版本。


管理员命令:
下列这些命令对hadoop集群的管理员是非常有用的。

daemonlog 使用:
   yarn daemonlog -getlevel <host:httpport> <classname>    yarn daemonlog -setlevel <host:httpport> <classname> <level>


参数选项
描述
-getlevel <host:httpport> <classname>
打印运行在<host:port>的守护进程的日志级别。这个命令内部会连接http://<host:port>/logLevel?log=<name>
-setlevel <host:httpport> <classname> <level>
设置运行在<host:port>的守护进程的日志级别。这个命令内部会连接http://<host:port>/logLevel?log=<name>
针对指定的守护进程,获取/设置日志级别.
示例1:
[html]  view plain  copy
  1. [root@hadoopcluster78 ~]# hadoop daemonlog -getlevel hadoopcluster82:50075 org.apache.hadoop.hdfs.server.datanode.DataNode  
  2. Connecting to http://hadoopcluster82:50075/logLevel?log=org.apache.hadoop.hdfs.server.datanode.DataNode  
  3. Submitted Log Name: org.apache.hadoop.hdfs.server.datanode.DataNode  
  4. Log Class: org.apache.commons.logging.impl.Log4JLogger  
  5. Effective level: INFO  
  6. [root@hadoopcluster78 ~]# yarn daemonlog -getlevel hadoopcluster79:8088 org.apache.hadoop.yarn.server.resourcemanager.rmapp.RMAppImpl  
  7. Connecting to http://hadoopcluster79:8088/logLevel?log=org.apache.hadoop.yarn.server.resourcemanager.rmapp.RMAppImpl  
  8. Submitted Log Name: org.apache.hadoop.yarn.server.resourcemanager.rmapp.RMAppImpl  
  9. Log Class: org.apache.commons.logging.impl.Log4JLogger  
  10. Effective level: INFO  
  11. [root@hadoopcluster78 ~]# yarn daemonlog -getlevel hadoopcluster78:19888 org.apache.hadoop.mapreduce.v2.hs.JobHistory  
  12. Connecting to http://hadoopcluster78:19888/logLevel?log=org.apache.hadoop.mapreduce.v2.hs.JobHistory  
  13. Submitted Log Name: org.apache.hadoop.mapreduce.v2.hs.JobHistory  
  14. Log Class: org.apache.commons.logging.impl.Log4JLogger  
  15. Effective level: INFO  
nodemanager
使用: yarn nodemanager
启动NodeManager


proxyserver
使用: yarn proxyserver
启动web proxy server


resourcemanager
使用: yarn resourcemanager [-format-state-store]

参数选项
描述
-format-state-store
RMStateStore的格式. 如果过去的应用程序不再需要,则清理RMStateStore, RMStateStore仅仅在ResourceManager没有运行的时候,才运行RMStateStore
启动ResourceManager


rmadmin
使用:
  yarn rmadmin [-refreshQueues]               [-refreshNodes]               [-refreshUserToGroupsMapping]                [-refreshSuperUserGroupsConfiguration]               [-refreshAdminAcls]                [-refreshServiceAcl]               [-getGroups [username]]               [-transitionToActive [--forceactive] [--forcemanual] <serviceId>]               [-transitionToStandby [--forcemanual] <serviceId>]               [-failover [--forcefence] [--forceactive] <serviceId1> <serviceId2>]               [-getServiceState <serviceId>]               [-checkHealth <serviceId>]               [-help [cmd]]


参数选项
描述
-refreshQueues
重载队列的ACL,状态和调度器特定的属性,ResourceManager将重载mapred-queues配置文件
-refreshNodes
动态刷新dfs.hosts和dfs.hosts.exclude配置,无需重启NameNode。
dfs.hosts:列出了允许连入NameNode的datanode清单(IP或者机器名)
dfs.hosts.exclude:列出了禁止连入NameNode的datanode清单(IP或者机器名)
重新读取hosts和exclude文件,更新允许连到Namenode的或那些需要退出或入编的Datanode的集合。
-refreshUserToGroupsMappings
刷新用户到组的映射。
-refreshSuperUserGroupsConfiguration
刷新用户组的配置
-refreshAdminAcls
刷新ResourceManager的ACL管理
-refreshServiceAcl
ResourceManager重载服务级别的授权文件。
-getGroups [username]
获取指定用户所属的组。
-transitionToActive [–forceactive] [–forcemanual] <serviceId>
尝试将目标服务转为 Active 状态。如果使用了–forceactive选项,不需要核对非Active节点。如果采用了自动故障转移,这个命令不能使用。虽然你可以重写–forcemanual选项,你需要谨慎。
-transitionToStandby [–forcemanual] <serviceId>
将服务转为 Standby 状态. 如果采用了自动故障转移,这个命令不能使用。虽然你可以重写–forcemanual选项,你需要谨慎。
-failover [–forceactive] <serviceId1> <serviceId2>
启动从serviceId1 到 serviceId2的故障转移。如果使用了-forceactive选项,即使服务没有准备,也会尝试故障转移到目标服务。如果采用了自动故障转移,这个命令不能使用。
-getServiceState <serviceId>
返回服务的状态。(注:ResourceManager不是HA的时候,时不能运行该命令的)
-checkHealth <serviceId>
请求服务器执行健康检查,如果检查失败,RMAdmin将用一个非零标示退出。(注:ResourceManager不是HA的时候,时不能运行该命令的)
-help [cmd]
显示指定命令的帮助,如果没有指定,则显示命令的帮助。


scmadmin 使用: yarn scmadmin [options]

参数选项
描述
-help
Help
-runCleanerTask
Runs the cleaner task
Runs Shared Cache Manager admin client


sharedcachemanager
使用: yarn sharedcachemanager
启动Shared Cache Manager


timelineserver
之前yarn运行框架只有Job history server,这是hadoop2.4版本之后加的通用Job History Server,命令为Application Timeline Server,详情请看:The YARN Timeline Server

使用: yarn timelineserver
启动TimeLineServer
  • 0
    点赞
  • 0
    评论
  • 1
    收藏
  • 一键三连
    一键三连
  • 扫一扫,分享海报

©️2021 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值