统计学知识系列:一篇搞懂假设检验

本文介绍了统计学中的核心概念——假设检验,包括假设检验的定义、显著性水平、原假设与备择假设、P值、两类错误以及单双侧检验。还通过实例详细解释了z检验和t检验的运用,帮助读者深入理解假设检验在数据分析中的应用,特别是A/B测试背后的统计原理。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言:对于数据分析师来说,统计学是必不可少的基础知识。不仅工作中会经常运用其概念,且也几乎是数据分析师工作的面试必考题(尤其是校招以及转行的朋友,当实战经验少的时侯会更关注基础功底是否扎实)。所以我准备开始以较简练的语言,辅以简单易懂案例,总结一些统计学核心的知识点。我们常用的ab实验,其背后的原理就是统计学中的假设检验,今天我们来详细说说假设检验。

一、常用核心概念

什么是假设检验:假设就是对从总体参数(均值、比例等)的具体数值所作的陈述,比如,我认为配方一比配方二的效果要好。而假设检验就是先对总体的参数提出某种假设,然后利用样本的信息判断假设是否成立的过程,比如上面的假设信息我该接受还是拒绝。

什么是显著性水平:显著性水平是一个概率值,原假设为真时,拒绝原假设的概率,表示为α,常取值为0.05、0.01、0.10。一个公司招聘,本来准备招聘100个人,公司希望只有5%的人是混水摸鱼招聘进来,所以可能会有5个人混进来,所谓显著性水平α,就是你允许有多少比例混水摸鱼的能通过测试。

原假设与备择假设:待检验的假设又叫原假设(零假设),一般表示为H0,原假设一般表示两者没有显著性差异。与原假设进行对比的叫备择假设,表示为H1。一般在比较的时候,主要有等于、大于、小于。

检验统计量:即计算检验的统计量。根据给定的显著性水平,查表得出相应的临界值。再将检验统计量的值与该显著性水平的临界值进行比较,得出是否拒绝原假设的结论。

P值:是一个概率值,如果原假设为真,p值是抽样分布中大于或小于样本统计量的概率。左检验时,p值为曲线上方小于等于检验统计量部分的面积。右检验时,p值为曲线上方大于等于检验统计量部分的面积。

假设检验的两种错误:类型 I 错误(弃真),如原假设为真,但否定它,则会犯类型 I 错误。犯类

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值