数据结构课程设计——算术表达式的求值
1.实验目的
1.在课程设计中提高学生的动手能力和编程能力;
2.在课程设计中提高数据结构中理论知识(栈和二叉树等知识)的应用。
3.在课程设计中提高自己对各个方面知识的综合能力。
2.实验内容
一个算术表达式是由操作数(operand)、运算符(operator)和界限符(delimiter)组成的。假设操作数是正实数,运算符只含加减乘除等四种运算符,界限符有左右括号和表达式起始、结束符“#”,如:#(7+15)*(23-28/4)#。引入表达式起始、结束符是为了方便。编程利用“运算符优先法”求算术表达式的值。
3.实验原理
1.设计建立二叉树的头文件(BiTree.h);
2.设计程序中需要用到的栈的相关头文件(Stack.h);
3.设计一个函数去判断符号的优先级(StrPriority());
4.设计函数去判断是否输入的字符是否为运算符或者界符(Is_Operator());
5.通过输入的字符串数组去建立表达式树(InitExpTree());
6.设计一个函数去实现运算(GetStrValue());
7.设计一个函数去将输入的数字型的字符串转换成Double型(ToNumber());
8.设计一个函数去实现通过二叉树遍历进行运算结果求值(EvalateExpTree());
9.为了保证程序的健壮性,根据可能的错误可能性全部错误结果进行打印错误类型(ErrorTest());
10.为了判断是否要打印最终的结果,定义了一个标志Is_Success去进行判断。
4.实验设备
Win10计算机一台
5.实验要求
(1) 从键盘或文件读入一个合法的算术表达式,输出正确的结果。
(2) 显示输入序列和栈的变化过程。
(3) 考虑算法的健壮性,当表达式错误时,要给出错误原因的提示。
6.实验程序
1.创建二叉树的头文件(BiTree.h)
#pragma once
#include <string>
using namespace std;
typedef struct BiTNode
{
char opstr; //结点符号域
string number; //结点数据域
BiTNode *lchild, *rchild; //左右孩子指针
}BiTNode,*BiTree;
void CreateExpTree_Op(BiTree &T, BiTree a, BiTree b, char theta)//a是左孩子,b是右孩子,theta是符号域
{
BiTree L = new BiTNode;
L->opstr = theta;
L->lchild = a;
L->rchild = b;
T = L;
}
void CreateExpTree_Number(BiTree &T, BiTree a, BiTree b, string theta)//a是左孩子,b是右孩子,theta是数字域
{
BiTree L = new BiTNode;
L->number = theta;
L->lchild = a;
L->rchild = b;
T = L;
}
2.用于建立栈的头文件(Stack.h)
#pragma once
#include"BiTree.h"
#include"Stack.h"
typedef struct StackNode
{
BiTree Tree; //存储的是二叉树
char Operator; //存储的是符号
StackNode *next;
}StackNode,*LinkStack;
int InitStack(LinkStack &S) //栈的初始化
{
S = NULL;
return 1;
}
int Push_EXPT(LinkStack &S, BiTree e) //二叉树入栈
{
LinkStack p = new StackNode;
p->Tree = e;
p->next = S;
S = p;
return 1;
}
int Push_OPTR(LinkStack &S, char e) //运算符入栈
{
LinkStack p = new StackNode;
p->Operator = e;
p->next = S;
S = p;
return 1;
}
int Pop_EXPT(LinkStack &S, BiTree &T1) //二叉树出栈
{
if (S == NULL) return 0;
LinkStack p = S;
T1 = p->Tree;
S = S->next;
delete p;
return 1;
}
int Pop_OPTR(LinkStack &S, char &ch) //运算符出栈
{
if (S == NULL) return 0;
LinkStack p = S;
ch = p->Operator;
S = S->next;
delete p;
return 1;
}
char GetTop_OPTR(LinkStack S)//取栈顶符号
{
if (S != NULL) return S->Operator