类内与类间散度矩阵

本文深入探讨了类内与类间散度矩阵的概念,它们在机器学习,尤其是深度学习中作为衡量数据分布和模型性能的重要指标。通过实例分析,解释了如何在TensorFlow和Python环境中计算这些矩阵,并阐述了它们如何影响神经网络的训练和分类效果。
摘要由CSDN通过智能技术生成
def cacuSW(train_face,k):
#train_face:行为样本,所有训练图像组成的矩阵,每个类别有k个图像为训练
    sw=np.zeros([train_face.shape[1],train_face.shape[1]])
    meanlei=np.zeros([40,10304])
类间散度矩阵(Class-to-Class Distance Matrix)通常用于衡量不同类别之间的差异,比如在聚类分析中,它可以帮助我们理解各簇间的相似度。这种矩阵通常是通过计算每个类别向量的平均值,然后计算这些平均向量之间的距离来构建的。 类内散度矩阵(Intra-Class Distance Matrix),则关注的是同一类别内部数据点的距离,常用于评估数据集内部的多样性。在Python中,我们可以使用sklearn库来实现这个过程,例如使用`pairwise_distances`函数结合`KMeans`的`inertia_`属性(即簇内的平方误差和): ```python from sklearn.metrics.pairwise import euclidean_distances from sklearn.cluster import KMeans # 假设X是一个二维数组,表示数据集 X = ... # 创建KMeans模型 kmeans = KMeans(n_clusters=n_classes) # 训练并获取类中心 centroids = kmeans.fit_predict(X) class_centers = kmeans.cluster_centers_ # 计算类内散度矩阵 intra_class_distance = euclidean_distances(class_centers[class_centers != -1], class_centers[class_centers == -1]) # 或者如果你想要基于样本的类内距离,可以这样: intra_sample_distance = euclidean_distances(X[kmeans.labels_ != -1], X[kmeans.labels_ == -1]) ``` 这里,`euclidean_distances`计算了两个集合之间的欧氏距离,`cluster_centers_`返回的是每个类别的中心点。如果分类结果中存在未被分配到任何类别的样本(`labels_==-1`),它们不会参与类内散度计算。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值