机器学习
文章平均质量分 77
wanty_chen
这个作者很懒,什么都没留下…
展开
-
《机器学习实战》第三章 决策树 学习总结
决策树与KNN均属于分类算法,它将欲处理的数据看做树的根,然后选取数据的特征作为分类的节点,每次选取一个节点将数据分成不同的子集,每次划分出来的子集可看做是树的分支,一次划分过程即为一次决策过程,直至最后无法继续划分,则停止进程,最终形成根在上部的一颗树型结构。1、构造决策树 在构造决策树前,先选取特征作为划分数据集的依据。为得到在划分数据时起决定作用的特征,要对每个特征...原创 2018-04-08 10:02:30 · 349 阅读 · 0 评论 -
《机器学习实战》 第四章 朴素贝叶斯 学习总结
朴素贝叶斯:使用条件概率进行分类分类准则如下: 如果 P(c1|x, y) > P(c2|x, y), 那么属于类别 c1; 如果 P(c2|x, y) > P(c1|x, y), 那么属于类别 c2.两个假设:假设特征之间相互独立,且每个特征同等重要。应用:文档的自动分类 首先遍历并记录下文档中出现的词,并将每个词的出现或不出现作为一个特征;然后计算不同的独立...原创 2018-04-09 21:51:52 · 515 阅读 · 0 评论 -
《机器学习实战》 第二章 k-近邻算法概述 学习过程中遇到的问题总结
在学习《机器学习实战》第二章时,遇到了一些问题,总结如下:1、书中所用python版本为2.6,本人操作时使用的是python3.6,有一些函数如reload、input等用法都有变化: raw_input-------->input reload()------------>import importlib importlib.reload() iteritem...原创 2018-04-02 18:28:37 · 460 阅读 · 0 评论 -
《机器学习实战》 第五章 逻辑回归 学习总结
逻辑回归的目的:寻找一个非线性函数sigmoid的最佳拟合参数。求解时使用的是最优化算法,最常用的是梯度上升法。 利用逻辑回归进行分类的中心思想是:根据现有数据对分类边界线建立回归公式,以此进行分类。 对于现有的一些数据点,我们用一条直线对这些点进行拟合(这条直线称为最佳拟合直线),这个拟合的过程就叫做回归。我们根据拟合的直线方程,进行分类。在《机器学习实战》中,使用sigmo...原创 2018-04-10 21:00:50 · 337 阅读 · 0 评论 -
《机器学习实战》 第七章 adaboost元算法 学习总结
boosting算法和bagging算法都是把一些弱分类器组合起来来进行分类的方法,统称为集成方法(ensemble method)或元算法。boosting是集中关注分类器错分的那些数据来获得新的分类器,分类的结果是基于所有分类器的加权求和结果的。在bagging中分类器权重相等,而boosting中分类器的权值并不相等,每个权重代表的是其对应分类器在上一轮迭代中的成功度。分类器的...原创 2018-04-16 16:04:46 · 366 阅读 · 0 评论 -
《机器学习实战》 第六章 SVM 学习总结
SVM:支持向量机,是一种二分类的分类器,通过求解二次优化问题来解决最大化分类间隔。既支持线性分类,又支持非线性分类。线性分类不需要样本数据,非线性分类需要部分样本数据(支持向量)。 分隔超平面:将数据集分隔开来的直线。支持向量:离分隔超平面最近的那些点。SVM的核心思想:与逻辑回归类似,使用一组训练集求出一组权...原创 2018-04-12 14:32:47 · 387 阅读 · 0 评论 -
《机器学习实战》 第八章 预测数值型数据:回归
与分类一样,回归也是预测目标值的过程。回归与分类的不同点在于,前者预测连续性变量,而后者预测离散型变量。1、用线性回归找到最佳拟合曲线 回归的目的是预测数值型的目标值。针对一个回归方程,求取回归系数的过程就是回归。一旦有了回归系数,再给定输人,做预测就非常容易了。具体的做法是用回归系数乘以输人值,再将结果全部加在一起,就得到了预测值。 假定输入数据存放在矩阵X...原创 2018-04-22 21:25:32 · 445 阅读 · 0 评论 -
《机器学习实战》 第九章 树回归
线性回归模型需要拟合所有样本(除局部加权线性回归外),当数据拥有众多特征且特征间关系十分复杂时,构建全局模型就显得太难了。一种可行的方法是将数据集切分成很多份易建模的数据,然后利用线性回归技术建模。如果首次切分后仍难以拟合线性模型就继续切分,在这种切分模式下,树结构和回归法相当有用。 CART(Classification And Regression Trees,分类回归...原创 2018-04-24 15:49:03 · 702 阅读 · 0 评论 -
《机器学习实战》——第十章 K-MEANS算法 学习总结
1、K-means聚类 聚类是一种无监督的学习,它将相似的对象归到同一簇中。聚类的方法几乎可以应用所有对象,簇内的对象越相似,聚类的效果就越好。K-means算法中的k表示的是聚类为k个簇,means代表取每一个聚类中数据值的均值作为该簇的中心,或者称为质心,即用每一个的类的质心对该簇进行描述。 聚类和分类最大的不同在于,分类的目标是事先已知的,而聚类则不一样,聚类事先不...原创 2018-05-04 21:34:06 · 1446 阅读 · 0 评论