LEARNING ACTIONABLE REPRESENTATIONS WITH GOAL-CONDITIONED POLICIES

ARC Actionable representations for control
DAct(s1,s2) Actionable distances

arc 状态表达将着重记录那些对action有影响的状态信息,对于是否能重构原始状态并不关心

首先在一个强化学习环境中生成最大熵目标导向策略πθ (a|s, g),然后用πθ在环境中生成500组trajectories,然后从这500组trajectories随机抽取state计算下面的Dact距离,最终构成一个Dact矩阵

Dact(si, sj ) = Es∼D [DKL(π(a|s, si)||π(a|s, sj ))] act距离构成的矩阵

L(φ) = Es∼D[ ?Es′ ∼D[ ?|| ||φ(s) − φ(s′ )|| − Dact (s, s′ ) ||2 ] ]?? 需要最小化的目标

此处需要注意的是“After precomputing Dact:a matrix of actionable distances”,得到的Dact是一个对称的矩阵,代表两两状态之间的act距离。最小化L(φ)做的,就是保证通过神经网络生成的s,s′ 的arc状态表征φ(s),φ(s′ )的距离跟Dact矩阵中的距离尽量接近

arc有很好的泛化属性,可以使用于非单一目标导向策略的训练,伴随更大的状态空间,一系列的目标
使用arc替换一般的状态表达,可以有更快的训练速度,比如巡航任务
arc可以用于奖励重塑,对于奖励稀疏的任务,可以在目标函数中加上arc距离,加速训练
arc可以用于层次强化学习,对于特别大的任务,可以在arc空间分成一系列的小任务,然后一个一个弹出来,变成单一目标任务供agent实现

作者用model-based reinforcement learning作为基线,没有状态表达训练出来的效果比model-based reinforcement learning还要好,发现arc最接近基线效果

对于原始状态表达,vae状态表达,arc状态表达,作者将三种状态数据降到2维平面观察,发现,在arc空间中,不重要的数据会被压在一起,重要的数据将保持分离,而别的状态表达没有这种表现

在通过危险区域到达目标的任务中,使用arc状态表达的策略,可以更快的实现目标。这表明,arc虽然是利用单一目标任务训练出来,但是arc可以用于各种各样的不同任务

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值