water
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
31、量子机器学习:现状、挑战与未来展望
本文综述了量子机器学习的研究现状、核心挑战与未来发展方向。从PAC学习和预测一般测量结果两个角度分析了量子与经典学习的样本复杂度关系,指出在多数情况下量子学习难以实现指数级样本优势,但在噪声环境下可能展现出独特优势。文章探讨了量子模型设计的随意性问题,强调需建立类似经典模型的理论基础,并提出应明确量子计算机适用的具体问题场景,如图分析、医学成像和物理模拟。同时讨论了当前商业应用案例的不确定性,呼吁合理管理商业期望。最后介绍了PennyLane、TensorFlow Quantum等主流开源工具对领域发展的推原创 2025-10-03 11:22:02 · 9 阅读 · 0 评论 -
30、量子计算在机器学习中的潜在优势
本文探讨了量子计算在机器学习中的潜在优势,涵盖量子模型的有效维度分析、特定算法与学习本身的量子加速机制,以及基于离散对数问题的学习任务设计。文章还讨论了从相干量子数据中学习的挑战与可能性,比较了精确学习与PAC学习框架下的样本复杂度,并综述了当前在量子查询复杂度方面的理论进展与限制。尽管存在多项式甚至指数级加速的潜力,但在实际应用中仍面临诸多开放性问题。原创 2025-10-02 12:15:22 · 5 阅读 · 0 评论 -
29、量子机器学习:基于伊辛模型的方法与潜在优势
本文探讨了量子机器学习中基于伊辛模型的方法,重点分析了量子退火设备作为采样器在训练玻尔兹曼机中的应用及其面临的连接性挑战。文章剖析了量子优势的四个维度:性能、加速、相关性和可用性,指出当前尚无算法能全面满足这些要求。同时,深入讨论了量子模型的泛化能力与数据编码策略的关系,强调编码方式对模型表达能力和过拟合的影响。此外,介绍了量子数据挖掘的潜力与挑战,并展望了量子机器学习在药物研发、金融、图像识别等领域的应用前景。最后,总结了该领域面临的理论与技术难题,呼吁跨学科合作推动发展。原创 2025-10-01 14:09:56 · 2 阅读 · 0 评论 -
28、基于Ising模型的量子机器学习方法探索
本文探讨了基于Ising模型的量子机器学习方法,涵盖从经典统计物理模型到量子扩展的通用策略。重点介绍了带横向场的量子Boltzmann机及其训练挑战与缓解方法,以及通过开放量子系统框架构建的量子Hopfield模型的动力学特性与相图行为。此外,还阐述了量子退火在组合优化中的应用,包括QBoost等算法如何将机器学习任务转化为二次无约束二进制优化问题,并在真实量子硬件上实现。尽管存在训练难度和硬件限制,该领域为未来量子增强学习提供了新方向。原创 2025-09-30 13:47:43 · 2 阅读 · 0 评论 -
27、容错量子机器学习与基于Ising模型的方法
本文探讨了容错量子机器学习中的概率模型构建与基于Ising模型的机器学习方法。首先介绍了通过辅助量子比特旋转和后选择测量实现玻尔兹曼分布的量子态制备,以及隐马尔可夫模型和因果模型的量子推广。随后阐述了量子集成方法,利用叠加原理构建加权模型集合。接着分析了Ising模型在机器学习中的应用脉络,包括Hopfield网络、Boltzmann机和自旋玻璃模型,并讨论了其向量子领域的扩展。最后详细描述了量子Ising模型的哈密顿量构造、量子态表示及构建流程,展示了物理学与量子机器学习之间的深刻联系。原创 2025-09-29 10:05:42 · 3 阅读 · 0 评论 -
25、容错量子机器学习中的线性代数加速与搜索算法
本文探讨了容错量子机器学习中的两类核心加速方法:线性代数加速器与搜索及振幅放大算法。在线性代数加速方面,重点介绍了HHL算法及其变体HHLDME在处理数据矩阵、核矩阵和邻接矩阵求逆问题中的应用,涵盖线性回归、支持向量机、高斯过程和Hopfield神经网络等典型机器学习模型。在搜索与优化方面,分析了基于Grover算法的最近邻查找、数据叠加处理、最佳模型搜索以及量子行走在机器学习中的实现路径与优势。文章总结了各类方法的操作流程与性能优势,并指出这些量子算法在特定条件下可为经典机器学习任务带来显著加速,是推动量原创 2025-09-27 12:18:53 · 2 阅读 · 0 评论 -
24、量子机器学习中的核方法与容错计算
本文探讨了量子机器学习中核方法的理论基础与应用,阐述了量子模型作为核方法在再生核希尔伯特空间(RKHS)中的数学表达及其优化优势。文章比较了基于核的训练与变分训练在性能、复杂度和最优性方面的差异,并指出核方法在小规模问题上的高效性与全局最优保证。同时,讨论了容错量子计算在加速经典机器学习任务中的潜力,包括线性代数子程序、振幅放大、Grover搜索以及经典概率模型的量子实现。最后,分析了当前面临的硬件、算法和数据加载挑战,并展望了未来量子机器学习的发展方向。原创 2025-09-26 09:49:37 · 3 阅读 · 0 评论 -
23、量子模型作为核方法:RKHS与基于核的训练
本文探讨了量子模型与核方法的深度融合,系统阐述了量子模型在特征空间中作为线性模型的本质,并引入再生核希尔伯特空间(RKHS)为量子核构建理论框架。通过定义量子核的RKHS,证明了其函数与量子模型等价,并利用表示定理揭示了最优测量可表示为训练数据态的线性组合。文章进一步分析了通用核与量子模型普适性的关系,提出了基于RKHS的训练优化方法,阐明了核对正则化的调节作用。结合实际应用考虑因素与未来研究方向,展示了该方法在理论分析、训练效率和模型性能方面的显著优势,为量子机器学习提供了坚实的理论基础与高效的技术路径。原创 2025-09-25 16:11:40 · 2 阅读 · 0 评论 -
22、量子模型与核方法的融合探索
本文探讨了量子模型与核方法的深度融合,揭示了数据编码在定义量子核和优化量子模型中的核心作用。通过将量子态制备视为特征映射,并引入密度矩阵形式的量子特征映射,构建了基于希尔伯特-施密特内积的量子核框架。文章系统介绍了多种数据编码方式(如幅度编码、角度编码、相干态编码)对应的量子核函数,并通过傅里叶表示揭示其周期性结构本质。研究表明,在凸损失假设下,寻找最优量子测量可转化为可处理的M维凸优化问题,避免了变分训练中的贫瘠高原难题。文中还总结了量子核在计算效率、特征表达上的优势及其面临的硬件限制与可解释性挑战,并展原创 2025-09-24 10:48:43 · 3 阅读 · 0 评论 -
21、量子计算与机器学习:变分电路与核方法的融合
本文探讨了量子计算与机器学习的融合,重点分析了变分电路作为神经网络模型的实现方式及其与随机傅里叶特征模型的联系。通过将量子模型视为核方法,揭示了其在高维希尔伯特空间中的线性特性,并阐述了量子核与再生核希尔伯特空间(RKHS)的关系。文章总结了量子模型在训练简易性、泛化性能和高维数据处理方面的优势,同时也指出了计算成本和理论理解上的挑战。最后展望了其在分类、回归、药物研发和材料科学等领域的应用前景,并提出了未来研究方向。原创 2025-09-23 15:56:21 · 3 阅读 · 0 评论 -
20、变分量子模型的训练及与神经网络的关联
本文探讨了变分量子模型的训练方法及其与经典神经网络的关联。内容涵盖梯度方差随量子比特数指数衰减的特性、基于参数偏移和生成对抗网络(GANs)的生成式训练策略,并分析了量子电路在不同编码方式下模拟非线性激活函数的可行性与挑战。文章还指出,尽管‘量子神经网络’这一术语存在误导性,但变分电路可通过线性变换与测量机制类比深度线性神经网络。最后总结了各类编码方式的优劣及未来研究方向,为量子机器学习的发展提供了理论基础与实践启示。原创 2025-09-22 14:10:09 · 1 阅读 · 0 评论 -
19、变分电路作为机器学习模型
本文深入探讨了变分电路在量子机器学习中的应用,重点分析了梯度计算的核心机制与挑战。文章介绍了有限差分法的局限性,并详细阐述了参数偏移规则如何实现精确梯度估计及其在混合计算中的优势。同时,深入剖析了贫瘠高原问题的成因——梯度方差随量子比特数指数下降,导致优化困难,并总结了其典型场景与数学证明。针对这些问题,提出了限制电路结构、引入正则化和多尺度训练等应对策略。最后展望了新型梯度计算方法、硬件与算法协同优化以及跨学科研究等未来发展方向,强调变分量子模型训练虽面临挑战,但潜力巨大,是当前活跃的研究前沿。原创 2025-09-21 14:07:40 · 3 阅读 · 0 评论 -
18、变分量子电路在机器学习模型中的应用与分析
本文系统探讨了变分量子电路在机器学习中的应用与分析。首先介绍了量子电路作为无监督概率模型(如玻恩机器)和确定性分类器的建模方式,并通过单量子比特电路示例展示了数据编码、参数化旋转与测量过程。接着,深入分析了变分量子模型所能表达的函数类,指出其本质为周期性三角函数的线性组合,频率由编码门的生成器特征值决定,重复编码可扩展频率谱,提升表达能力。随后,阐述了基于自动微分的训练方法,重点介绍参数平移规则计算量子梯度的机制,并给出完整的训练流程及生成对抗训练的应用场景。最后总结了模型类型、函数表达特性与训练策略,并展原创 2025-09-20 12:30:55 · 4 阅读 · 0 评论 -
17、量子机器学习中的数据编码与变分电路
本文深入探讨了量子机器学习中的核心组成部分——数据编码与变分电路。首先介绍了幅度编码、基编码和旋转编码三种主要的数据编码方法,分析其特征映射性质及应用场景,并比较了并行与串行重复编码的策略。随后阐述了变分电路作为量子机器学习模型的基本框架,包括其在混合量子-经典架构中的角色、确定性与概率性模型的构建方式,以及训练过程中基于梯度和黑盒优化的技术。文章还探讨了变分电路与经典模型(如神经网络)之间的联系与区别,揭示了量子特性带来的潜力与挑战。最后展望了变分量子模型在量子化学、优化问题和机器学习任务中的应用前景,同原创 2025-09-19 12:51:29 · 3 阅读 · 0 评论 -
16、量子计算中的数据表示与特征映射
本文系统介绍了量子计算中的主要数据表示与特征映射方法,包括振幅编码、旋转编码、哈密顿量编码和密度矩阵指数化,分析了各类编码方式的原理、复杂度、资源需求及适用场景。文章强调了数据编码作为特征映射在量子机器学习中的核心作用,探讨了其对数据结构的影响以及引入量子优势的潜力,并总结了当前面临的挑战与未来发展趋势,为量子算法设计与应用提供了理论参考。原创 2025-09-18 12:57:31 · 2 阅读 · 0 评论 -
15、量子计算机中的数据表示与任意状态制备
本文深入探讨了量子计算机中的数据表示与任意状态制备方法。首先介绍了定点二进制表示下的基编码与叠加态编码,分析了Ventura和Martinez提出的叠加态制备算法及QRAM的应用。随后重点讨论了振幅编码中的高效状态制备技术,包括Möttönen的多控制旋转方法、Grover-Rudolph的概率分布驱动方案、Soklakov-Schack的近似制备方法,以及利用QRAM实现通用状态制备的流程。文章总结了各类方法的适用场景与局限性,强调在量子机器学习中根据数据特征选择合适编码策略的重要性,并指出量子比特高效制原创 2025-09-17 09:55:56 · 3 阅读 · 0 评论 -
14、量子计算与数据编码:原理与策略
本文深入探讨了量子计算在数据编码与机器学习中的原理与策略。文章首先介绍了量子计算的优势及QAOA等算法的应用,随后分析了量子退火、单向量子计算和连续变量量子计算等不同模型的特点。重点阐述了四种主要的数据编码方法——基编码、振幅编码、角度编码和哈密顿量编码,比较了它们在量子比特数、运行时间和适用场景上的差异,并提供了编码策略选择的流程图。最后强调,合理的数据编码是连接经典数据与量子计算的关键,对实现高效量子机器学习至关重要。原创 2025-09-16 09:19:20 · 2 阅读 · 0 评论 -
13、量子计算关键算法解析
本文深入解析了量子计算中的关键算法,包括量子相位估计、矩阵乘法与求逆、以及变分量子算法(如VQE和QAOA)。详细阐述了各算法的核心原理、实现步骤及其在密码学、金融和药物研发等领域的应用前景。同时总结了不同算法的优缺点与适用场景,并探讨了当前面临的硬件限制、算法优化及跨学科融合等挑战,展望了量子计算未来的发展方向。原创 2025-09-15 14:08:00 · 2 阅读 · 0 评论 -
12、量子计算重要算法解析
本文深入解析了量子计算中的重要算法及其与经典计算的关系,介绍了Toffoli门在实现经典逻辑可逆操作中的作用,并探讨了量子算法的独特优势。重点分析了交换测试、Hadamard测试和反转测试在测量量子态重叠中的应用,阐述了Grover搜索算法在无序数据库搜索中的平方加速能力,以及量子相位估计在特征值提取和量子模拟中的核心地位。文章还总结了这些算法在量子机器学习、数据搜索和量子模拟等领域的应用前景,并讨论了当前面临的硬件实现难度、资源需求和理论证明困难等挑战。最后展望了量子算法未来的发展趋势,强调技术进步与跨学原创 2025-09-14 10:43:11 · 2 阅读 · 0 评论 -
11、量子计算中的算法与编码策略
本文深入探讨了量子计算中的核心算法与信息编码策略。首先通过Deutsch-Josza算法展示了量子叠加与干涉在解决全局函数性质问题上的强大能力。随后系统介绍了四种主要的输入编码方法:基编码、振幅编码、时间演化编码和哈密顿量编码,并分析了各自的适用场景与局限性。文章进一步阐述了量子加速的概念,包括可证明加速、强加速等类型,并结合计算复杂性理论说明了量子算法相对于经典算法的潜在优势。最后强调了随着量子硬件的发展,理论复杂性与实际实现之间的平衡日益重要。原创 2025-09-13 09:45:07 · 3 阅读 · 0 评论 -
10、量子计算:从基础概念到算法实现
本文深入介绍了量子计算的基础概念,包括量子态与密度矩阵的数学表达、单比特与多比特量子门的操作原理,并通过纠缠电路和参数化门展示了量子逻辑门的应用。文章进一步探讨了计算基测量的概率特性及期望估计方法,揭示了量子并行性在函数评估中的核心作用。最后,以Deutsch算法和Deutsch-Josza算法为例,展示了量子计算如何仅用一次查询即可判断函数的全局性质,体现了其相较于经典算法的指数级加速潜力。原创 2025-09-12 09:36:01 · 2 阅读 · 0 评论 -
9、量子计算:原理、概念与应用
本文系统介绍了量子计算的原理与基础理论,涵盖量子力学公设、状态空间、可观测量、时间演化、量子测量及复合系统等核心概念,并对比了海森堡矩阵形式与狄拉克符号体系。文章进一步阐述了量子计算的基本单元——量子比特及其叠加态、纠缠态特性,解析了量子并行性与干涉带来的计算优势,同时讨论了当前面临的技术挑战如退相干与可扩展性。文中还概述了量子计算在密码学、优化问题和机器学习等领域的应用前景,回顾了关键算法的发展历程,并展望了硬件进步、算法创新与跨学科融合的未来趋势,为读者提供了全面的量子计算入门指南。原创 2025-09-11 13:40:12 · 5 阅读 · 0 评论 -
8、机器学习与量子计算基础入门
本文介绍了机器学习与量子计算的基础知识,涵盖机器学习的主要研究方向如深度学习、优化、概率图模型和核方法,并系统讲解了量子计算的理论基础,包括量子态、可观测量、酉演化、复合系统、密度矩阵等核心概念。进一步探讨了量子计算中的基本操作、重要量子算法(如Shor算法和Grover算法)以及信息编码方式。最后分析了机器学习与量子计算的相互联系、未来发展趋势及面临的挑战,展望了量子机器学习在计算速度、数据处理能力和算法复杂度方面的潜在优势。原创 2025-09-10 10:43:30 · 2 阅读 · 0 评论 -
6、机器学习方法与训练策略详解
本文详细介绍了机器学习中的核心方法与训练策略,涵盖过拟合识别、随机梯度下降优化机制以及无监督学习的理论基础。文章系统讲解了线性模型、各类神经网络(包括感知机、前馈网络、循环网络和玻尔兹曼机)的结构与训练方式,并探讨了模型选择、超参数调优、正则化、模型融合等关键优化策略。同时,针对分类、回归和聚类任务,总结了常用的评估指标,并提供了基于数据特征的模型选择流程。通过理论与应用结合的方式,帮助读者深入理解并有效运用机器学习模型解决实际问题。原创 2025-09-08 16:12:53 · 3 阅读 · 0 评论 -
5、机器学习中的损失、风险最小化与优化
本文系统介绍了机器学习中损失函数、风险最小化、正则化与优化的核心概念。从监督学习中的常见损失函数出发,详细阐述了经验风险最小化原理及其与泛化能力的关系,并探讨了L1/L2正则化等防止过拟合的策略。文章还分析了梯度下降与随机梯度下降等优化方法的特点及学习率调整策略,结合流程图和表格帮助理解关键流程与选择依据。最后总结了各组件之间的关联性,并指出深度学习对传统理论的挑战,为构建高性能、强泛化的模型提供了理论基础与实践指导。原创 2025-09-07 14:36:41 · 2 阅读 · 0 评论 -
4、机器学习中的典型问题与核心要素解析
本文深入解析了机器学习中的典型问题与核心要素,涵盖监督学习与无监督学习的基本定义与任务类型。文章重点阐述了机器学习的三大核心要素:数据、模型和损失,详细讨论了数据的独立同分布假设、表示与预处理方法,确定性与概率模型的区别与联系,以及损失函数在模型训练与选择中的关键作用。同时,针对数据不足、模型过拟合与欠拟合、损失函数优化等常见挑战,提出了相应的应对策略。最后总结了各要素之间的关系,并展望了机器学习未来的发展方向,为读者构建系统的机器学习知识框架提供了有力支持。原创 2025-09-06 15:29:36 · 2 阅读 · 0 评论 -
3、量子算法与机器学习:原理、实例与洞察
本文探讨了量子算法在机器学习中的应用,通过一个量子平方距离分类器的实例,详细介绍了从数据预处理、编码到量子计算与测量的完整流程。文章还对比了机器学习的主要类型——监督学习、无监督学习和强化学习,并结合图像识别、时间序列预测等典型问题,揭示了量子机器学习算法的设计原理与实际挑战。最后总结了量子机器学习的关键洞察,包括数据编码的重要性、预处理要求、测量机制以及对经典算法的继承与调整,为理解量子与机器学习的融合提供了清晰视角。原创 2025-09-05 12:24:32 · 1 阅读 · 0 评论 -
2、量子机器学习:概念、方法及示例
本文系统介绍了量子机器学习的兴起历程、核心概念与研究方法,详细阐述了量子计算与机器学习结合的四种模式(CC、QC、CQ、QQ),并区分了容错与近期两类研究路径。通过泰坦尼克号数据集的玩具示例,展示了平方距离分类器如何借助哈达玛变换在量子计算机上实现,并解释了其背后的量子干涉原理。文章还探讨了该领域面临的硬件限制、数据加载和性能评估等挑战,展望了未来技术突破与跨学科合作的潜力,最后提供了拓展阅读与实践建议,帮助读者深入理解与参与这一前沿交叉领域。原创 2025-09-04 13:25:43 · 4 阅读 · 0 评论 -
1、量子机器学习:融合与展望
本文深入探讨了量子机器学习这一融合量子计算与机器学习的前沿领域,介绍了其定义、核心问题及发展背景,分析了量子计算在近期限(NISQ)时代的挑战与机遇,以及机器学习理论与实践的发展现状。文章通过量子平方距离分类器的示例,展示了量子并行性与干涉效应在分类任务中的应用潜力,并讨论了量子机器学习在泛化能力、运行时间加速和数据需求方面的潜在优势。最后,展望了该领域在技术突破、理论完善和应用拓展方面的未来发展方向。原创 2025-09-03 15:56:18 · 3 阅读 · 0 评论