ZCMU-1618:骨牌覆盖1(规律题)

Problem E: 骨牌覆盖1

Time Limit: 1 Sec  Memory Limit: 128 MB
Submit: 376  Solved: 179
[Submit][Status][Web Board]

Description

我们有一个2xN的长条形棋盘,然后用1x2的骨牌去覆盖整个棋盘。对于这个棋盘,一共有多少种不同的覆盖方法呢?

 

Input

输入n,n<=100000

 

Output

覆盖方案总数对19999997取余

 

Sample Input

1

2

Sample Output

1

2

HINT

 

【解析】

这种题目看着就是规律题。列几个发现好像是斐波那契,那就这样试一下好了。问题是这个N可以很大,所以题目要取余。

虽说有大佬用快速幂矩阵写的,可是萌新看不懂还没学过!那我就只能打表了。。。。

#include <bits/stdc++.h>
using namespace std;
int fib[100010] = { 1,1,2 };
void f()
{
	for (int i = 3; i < 100010; i++)
		fib[i] = (fib[i - 1] + fib[i - 2]) % 19999997;//每次都取余
}
int main()
{
	int n;
	f();
	while (~scanf("%d", &n))
		printf("%d\n", fib[n]);

	return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值