为什么要梯度累积

梯度累积

什么是梯度累积

随着深度学习模型变得越来越复杂,模型的训练通常需要更多的计算资源,特别是在训练期间需要更多的内存。在训练深度学习模型时,在硬件资源有限的情况下,很难使用大批量数据进行有效学习。大批量数据通常可以带来更好的梯度估计,但同时也需要大量的内存。

梯度累积是一种巧妙的技术,它允许在不增加内存需求的情况下,有效地使用更大的批量数据来训练深度学习模型。

如何理解理解梯度累积

梯度累积本质上涉及将大批量划分为较小的子批量,并在这些子批量上累积计算出的梯度。这一过程模拟了使用较大批量训练的情况。

梯度累积的工作原理

以下是梯度累积过程的逐步分解:

  1. 分而治之:将你的硬件无法处理的大批量划分为更小的、可管理的子批量。
  2. 累积梯度:不是在处理每个子批量后更新模型参数,而是在几个子批量上累积梯度。
  3. 参数更新:在处理了预定义数量的子批量后,使用累积的梯度来更新模型参数。

这种方法使得模型能够利用大批量的稳定性和收敛性,而不必提高内存成本。

梯度累积的数学原理

在这里插入图片描述

梯度累积过程

在深度学习模型中,一个完整的前向和反向传播过程如下:

  • 前向传播:数据通过神经网络,层层处理后得到预测结果。

  • 损失计算:使用损失函数计算预测结果与实际值之间的差异。以平方误差损失函数为例:

    L ( θ ) = 1 2 ( h ( x k ) − y k ) 2 L(\theta) = \frac{1}{2} (h(x_k) - y_k)^2 L(θ)=21(h(xk)yk)2

    这里 L ( θ ) L(\theta) L(θ) 表示损失函数, θ \theta θ 代表模型参数, h ( x k ) h(x_k) h(xk) 是对输入 x k x_k xk 的预测输出, y k y_k yk 是对应的真实输出。

  • 反向传播:计算损失函数相对于模型参数的梯度(对上式求导):

    ∇ θ L ( θ ) = ( h ( x k ) − y k ) ⋅ ∇ θ h ( x k ) \nabla_\theta L(\theta) = (h(x_k) - y_k) \cdot \nabla_\theta h(x_k) θL(θ)=(h(xk)yk)θh(xk)

  • 梯度累积:在传统的训练过程中,每完成一个批次的数据处理后就会更新模型参数。而在梯度累积中,梯度不是立即用来更新参数,而是累加多个小批次的梯度:

    G = ∑ i = 1 n ∇ θ L i ( θ ) G = \sum_{i=1}^{n} \nabla_{\theta} L_i(\theta) G=i=1nθLi(θ)

    这里 G G G 是累积梯度, L i ( θ ) L_i(\theta) Li(θ) 是第 i i i 个batch的损失函数。

  • 参数更新:累积足够的梯度后,使用以下公式更新参数:

    θ = θ − η ⋅ G \theta = \theta - \eta \cdot G θ=θηG
    其中 l r lr lr 是学习率,用于控制更新的步长。

如何实现梯度累积

以下是在 PyTorch 中实现梯度累积的示例:

# 模型定义
model = ...
optimizer = ...

# 累积步骤数
accumulation_steps = 4

for epoch in range(num_epochs):
    optimizer.zero_grad()
    for i, (inputs, labels) in enumerate(dataloader):
        outputs = model(inputs)
        loss = criterion(outputs, labels)
        loss.backward()

        # 只有在处理足够数量的子批量后才更新参数
        if (i + 1) % accumulation_steps == 0:
            optimizer.step()
            optimizer.zero_grad()

    # 如果批量大小不是累积步数的倍数,确保在每个epoch结束时更新
    if (i + 1) % accumulation_steps != 0:
        optimizer.step()
        optimizer.zero_grad()

这个例子中,accumulation_steps 定义了在参数更新前需要累积的batch数量。

梯度累积的可视化

为了更好地理解梯度累积的影响,可视化可以非常有帮助。以下是一个例子,说明如何在神经网络中可视化梯度流,以监控梯度是如何被累积和应用的:

import matplotlib.pyplot as plt

# 绘制梯度流动的函数
def plot_grad_flow(named_parameters):
    ave_grads = []
    layers = []
    for n, p in named_parameters:
        if (p.requires_grad) and ("bias" not in n):
            layers.append(n)
            ave_grads.append(p.grad.abs().mean())
    plt.plot(ave_grads, alpha=0.3, color="b")
    plt.hlines(0, 0, len(ave_grads)+1, linewidth=1, color="k")
    plt.xticks(range(0, len(ave_grads), 1), layers, rotation="vertical")
    plt.xlim(xmin=0, xmax=len(ave_grads))
    plt.xlabel("层")
    plt.ylabel("平均梯度")
    plt.title("网络中的梯度流")
    plt.grid(True)
    plt.show()

# 在训练过程中或训练后调用此函数以可视化梯度流
plot_grad_flow(model.named_parameters())

参考资料:

  1. Gradient Accumulation Algorithm

  2. Performing gradient accumulation with 🤗 Accelerate

  3. 梯度累加(Gradient Accumulation)

  • 25
    点赞
  • 18
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大拨鼠

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值