梯度累积算法

1.梯度累积

在训练神经网络的时候,batch size越大模型训练越稳定,但是往往受制于显存大小而不能设置较大的batch size,为了达到和设置大batch size一样的训练效果,可以采用梯度累积的方式来进行训练。传统的训练方式都是训练一个batch的样本就执行一次梯度下降算法更新参数,梯度累积则是设置一个累积步数 n n n,每训练 n n nbatch才更新一次参数。例如,batch size设置为32,传统的算法每次扫过32个样本后即更新一次参数,假设我们的显存最大只支持batch size是8,那么我们设置累积步数为4,达到的效果和传统的算法是一样的。

以简单的线性回归为例:
1.传统的算法

import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import Dataset, DataLoader

weights = torch.tensor([5, 10], dtype=torch.float32)
bias = torch.tensor(1, dtype=torch.float32)

data = torch.randn(size=(640, 2), dtype=torch.float32)
target = torch.matmul(data, weights) + bias
target = target.reshape(640, 1)

class MyDataset(Dataset):

    def __init__(self, data, target):
        self.data = data
        self.target = target

    def __getitem__(self, index):
        return self.data[index], self.target[index]

    def __len__(self):
        return len(self.data)

mydataset = MyDataset(data, target)
trainLoader = DataLoader(dataset=mydataset, batch_size=64)

model = nn.Linear(in_features=2, out_features=1)
loss = nn.MSELoss()
optimizer = torch.optim.SGD(params=model.parameters(),lr=0.01)

for _ in range(500):
    for data, target in trainLoader:
        optimizer.zero_grad()
        y_hat = model(data)
        loss_val = loss(y_hat, target)
        loss_val.backward()
        optimizer.step()
  1. 梯度累积算法
trainLoader = DataLoader(dataset=mydataset, batch_size=16)
accumlation_step = 4 # 遍历4个batch反向传播一次
for _ in range(500):
    for i, (data, target) in enumerate(trainLoader):
        y_hat = model(data)
        loss_val = loss(y_hat, target)
        loss_val = loss_val / accumlation_step
        loss_val.backward()
        if (i + 1) % accumlation_step == 0:
            optimizer.step()
            optimizer.zero_grad()
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值