Text Embedding(文本嵌入)模型介绍

本文介绍了Text Embedding在NLP中的重要性,特点如语义相似性和上下文敏感性。探讨了OpenAI的text-embedding-ada-002和text-embedding-3系列模型,以及M3E模型,强调了M3E的多模态融合和多粒度表示学习。M3E在中文语境下表现出色,适用于同质和异质文本任务。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Text Embedding 是自然语言处理(NLP)中的一个核心技术,它指的是将文本(如单词、短语、句子或段落)转换为固定大小的实数向量,这些向量可以捕获文本中的语义信息,使得语义上相似的文本在嵌入空间中具有相似的向量表示。这种转换使得文本数据能够被计算机理解和处理,从而可以在各种NLP任务中使用。

Text Embedding 特点

  • 语义相似性:在嵌入空间中,语义上相似的单词或文本通常具有相近的向量表示。
  • 上下文敏感性:某些嵌入方法(如BERT)可以生成上下文相关的嵌入,即同一个单词在不同的上下文中可能有不同的嵌入表示。
  • 维度:嵌入向量的维度是一个超参数,可以根据任务和数据集进行调整。

应用场景

  • 文本分类:使用嵌入向量作为文本表示,输入到分类模型中进行训练。
  • 信息检索:通过计算嵌入向量之间的相似度来检索相关的文本。
  • 问答系统:将问题和答案转换为嵌入向量,然后计算它们之间的相似度来找到最佳答案。
  • 语义相似度计算:直接计算两个文本嵌入向量之间的相似度(如余弦相似度)来评估它们的语义相似性。

Text Embedding 常用模型介绍

1、OpenAI的text-embedding模型

1.1、text-embedding-ada-002

text-embedding-ada-002 是 OpenAI 于 2022 年 12 月提供的一个 embedding 模型,但用户需要调用接口并付费使用。

模型特点:

  • 统一能力:OpenAI 通过将五个独立的模型(文本相似性、文本搜索-查询、文本搜索-文档、代码搜索-文本和代码搜索-代码)合并为一个新的模型,使这个单一的表述在一系列不同的文本搜索、句子相似性和代码搜索基准中,比以前的嵌入模型表现得更好。
  • 上下文:上下文长度为 8192,这使得它在处理长文档时更加方便。
  • 嵌入尺寸:这个模型的嵌入尺寸只有 1536 个维度,是 davinci-001 嵌入尺寸的八分之一。这使得新的嵌入在处理矢量数据库时更具成本效益。

模型使用:

from openai.embeddings_utils import get_embedding, cosine_similarity
 
def search_reviews(df, product_description, n=3, pprint=True):
  embedding = get_embedding(product_description, model='text-embedding-ada-002')
  df['similarities'] = df.ada_embeddi
### 文本嵌入向量相加方法 对于文本嵌入向量的相加操作,在实际应用中通常涉及将不同来源或类型的文本嵌入表示组合起来形成更丰富的特征表达。当提到具体实现时,可以考虑如下方式: 假设已经获得了两个不同的文本片段对应的嵌入向量 `embedding_1` 和 `embedding_2` ,这两个向量可能来自相同的预训练模型或是不同模型(例如一个是基于 BERT 的 m3e 模型得到的结果,另一个则是通过其他 Text Embedding 方法获得)[^1]。 为了执行简单的相加运算,确保两者具有相同维度是非常重要的前提条件之一。如果满足此条件,则可以直接利用 NumPy 或 PyTorch 提供的基础算术功能来进行逐元素求和: ```python import torch # 假设 embedding_1 和 embedding_2 是形状为 (batch_size, embed_dim) 的张量 summed_embedding = embedding_1 + embedding_2 # 对应位置上的数值相加 ``` 值得注意的是,在某些情况下,比如 VISTA-SF 中所描述的情况,可能会涉及到先单独对文本和图像进行编码再将其结果融合的过程[^2]。此时,“相加”的概念不仅仅局限于纯数学意义上的加法,还可能是某种形式的分数融合(score-fusion),即按照特定权重分配给各个模态的数据后再做累加处理。 另外需要注意的一点是在构建 Transformer 类架构下的输入层时,除了常规的文字 token 外还需要加入位置编码信息以保留序列顺序特性[^3]。不过这一步骤并不直接影响到最终输出表征之间的线性组合过程。 最后强调一点,虽然上述例子展示了基本的相加逻辑,但在实践中往往还会结合归一化、标准化等技术手段进一步优化效果[^4]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值