分布式期货行情交易系统-架构设计

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档

 

 


前言

一、系统架构图

根据对系统的分析以及本身开发人员对技术的熟练度,选取消息队列kafka来实现对系统的解耦,选取zookeeper来对整个系统进行分布式管理,数据库选用了开源分布式数据库TDengine。

系统架构图如下图:

二、功能分析

1.客户端

客户端通过配置连接不同的前置服务器,更优的做法是客户端根据网络测试自动选择最优前置建立scoket长连接。

2. 前置

设计行情系统为开放系统(无需注册科直接使用),则用户是匿名连接,按规则为每个连接生成全局不同guid(前置id_socket)来标识客户端。

交易和行情分别建立单独的长连接。

行情请求是匿名的,可以提交给任意K线服务处理,可以通过Kafka本身实现负载均衡(后面将在Kafka系统介绍中讲);

交易请求在第一条登录请求确定交易服务后,后继的请求都必须持续由该服务处理,因此,对交易请求通过负载均衡算法(交易账号和期货公司编码作为hash算法key)来实现消息的分发。

3.实时行情采集

通过行情API获取实时行情,异步处理:入库(如果存储的话),同时生成基础K线数据入库。

4.K线服务

根据客户端的请求来查询数据库TDengine及Redis,生成客户端所需的K线数组。

5.交易服务

交易服务分为多个进程:用户管理主进程及交易子进程(每一种类型的交易API运行一个进程),交易子进程和用户管理主进程通过socket通信(也可通过其他方式进行进程间通信)。

用户管理主进程启动后开启服务端口监听,然后启动交易子进程,交易子进程启动后与用户管理主进程建立连接。

交易子进程是必须支持多交易用户同时登陆。

用户管理主进程根据提交的交易客户(客户端提交登录请求时设定使用哪种类型的接口,一般是**CTP服务器/**恒生服务器)转交给相应的交易子进程处理。

6 云条件单

  • 价格触发云条件单

价格云条件单触发主要是实时行情,实时行情来源有两种:一种是实时行情服务提交到消息队列kafka中的数据,另一种是来源于行情API。为了保证速度选用行情API。

收到条件单处理逻辑分三步:1.根据交易合约编码先分组;2.按大于或者小于再分组;3.组内根据触发价格顺序排序。

触发处理逻辑:收到实时行情,根据实时行情合约编码查找分组,大于组中触发价格大于实时行情价格的所有单子触发,小于组中触发价格小于实时行情价格的所有的单子触发。

  • 时间触发云条件单

避免服务器时间存在不准确的可能性,利用实时行情的时间来触发时间云条件单。

注意事项

国内期货品种已超过50个品种,每个品种相对活跃的合约约为3个,实际每秒钟收到实时行情数据约为50 * 3 * 2=300多条,每条行情数据按2KB计算,每秒钟有600多K数据,因此如果要保存实时行情数据需要巨大的存储空间。

### 期货交易系统分析模块的开发与设计 #### 分布式架构下的功能分解 为了满足现代金融市场的高性能需求,分布式期货行情交易系统的架构被广泛采用。通过将行情和交易模块拆分为独立的微服务单元,能够显著降低整体系统的复杂度并提升可维护性和扩展性[^1]。 #### 技术栈的选择 对于基于Python的期货程序化交易系统而言,技术选型至关重要。以下是推荐的技术组合及其作用: - **编程语言**: Python (版本3.7.7),因其强大的数据处理能力和丰富的第三方库支持而成为首选。 - **Web框架**: Django 提供了一个完整的MVC结构用于快速构建应用层逻辑。 - **数据库管理**: MySQL 5.7 版本作为关系型数据库存储核心业务数据;建议配合 Navicat 工具完成日常管理和查询优化工作。 - **集成环境**: PyCharm 是一款优秀的IDE,提供了全面的支持来提高编码效率。 - **前端展示**: 谷歌浏览器兼容性强,适合测试交互界面效果[^2]。 #### 数据流与算法实现 在具体到分析模块时,则需考虑以下几个方面: 1. **实时数据分析** 需要对接收的数据包进行解析,并提取有用的信息字段如价格变动趋势、成交量变化率等指标参数。这一步骤通常会利用pandas这样的高效数值计算库来进行批量操作。 ```python import pandas as pd df = pd.DataFrame(data) # 假设data是从API接收到的一批原始记录 moving_average = df['price'].rolling(window=10).mean() # 计算简单移动平均线 ``` 2. **历史回测验证** 构建模拟运行环境重现过去一段时间内的市场状况,评估策略表现的好坏程度。此过程依赖于保存下来的完整时间序列资料集以及精确的时间戳标记机制确保每笔订单执行顺序无误。 3. **风险控制模型建立** 结合统计学原理设定止损位、止盈目标以及其他保护措施防止极端情况下造成巨大损失。例如VaR(value at risk)方法可以帮助估算潜在的最大亏损额度。 4. **可视化呈现成果** 使用matplotlib或者seaborn绘制图表直观反映各项关键性能指数KPIS(Key Performance Indicators), 方便决策者理解当前状态做出相应调整动作。 最后值得注意的是如果寻求已经成熟的解决方案可以直接联系相关资源提供方获取进一步的帮助和支持[^3].
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值