chapter 12 函数型线性模型


(以下内容来自 Ramsay and Silverman 的 Functional Data Analysis ;second edition)

12.1 引言

前文中我们已经探讨了函数型变量的变异,但是并未讨论这种变异有多少是被其他协变量所解释。现在,我们讨论协变量的使用。再经典统计学中,方差分析、线性回归和一般线性模型都服务于这种目的,现在我们将一般线性模型的符号推广到函数型情况下。
以下两种情况只要有一种便被认为线性模型是函数型的:
1、随参数t变化的因变量x是函数型的
2、自变量中的一个或者是多个是函数型的
再第13章我们将看到通过一个传统的设计矩阵来预测一个函数型因变量x(t)(函数型方差分析)或是通过一个一组传统的变量来预测因变量x(t)(函数型多元回归)都包含了相当简单易懂的思考形式和计算策略的改变,而这些改变在普通的方差分析和多元回归中都是比较熟悉的。最主要的改变是回归系数变为回归系数函数 β j ( t ) \beta_j(t) βj(t).
另一方面,当一个或者是多个协变量他们自己是函数型变量时,最广泛的方法使用协变量来解释因变量是可行的。本章我们初步看看一些方才讨论的这些情况中的几种,随后几章我们会详细探讨这几种情形。
考虑35个加拿大气象站的天气状况。随时间测量的降雨 P r e c ( t ) Prec(t) Prec(t)将是函数型因变量,

  • 4个气象地区是一个分类自变量
  • 随时间测量的温度 T e m p ( s ) Temp(s) Temp(s)将是一个函数型自变量

12.2 函数型因变量和分类自变量

平均年降雨量的大小依赖于气象站所在的地区吗?地区的位置为:亚特兰大、北极圈、欧洲大陆、太平洋地区;答案几乎是确定的,降雨量肯定依赖于地区。我们仍然有必要看看是否数据会拒绝原假设即降雨量不依赖于地区。如果降雨量确实不依赖于地区,我们将想要描述在两个函数型变量之间的差异。

在正式用语中,在每一个气候地区 g = 1 , 2 , 3 , 4 g = 1,2,3,4 g=1,2,3,4的气象站的数目为 N g N_g Ng,在第 g g gth个组中的第 m m mth 个降雨量函数模型被表示为 P r e c m g Prec_{mg} Precmg:
P r e c m g ( t ) = μ ( t ) + α g ( t ) + ϵ m g ( t ) Prec_{mg}(t)=\mu(t)+\alpha_g(t)+\epsilon_{mg}(t) Precmg(t)=μ(t)+αg(t)+ϵmg(t)
在这个模型中,函数 μ ( t ) \mu(t) μ(t)是所有35个气象站的总体平均值,效应函数 α g ( t ) \alpha_g(t) αg(t)代表特定气候地区与总体平均值的偏离;在地区因素尽可能多地解释了变异之外剩余的残差变化被残差函数 ϵ m g ( t ) \epsilon_{mg}(t) ϵmg(t)捕获。而我们的任务是利用数据 P r e c m g Prec_{mg} Precmg和气候带编码的设计矩阵来估计函数型参数 μ \mu μ α g \alpha_g αg.
此外,我们想要检验更局部的假设例如“在仲夏期间各地区之间的降雨量没有差异”或者“在仲冬期间各地区有本质的差异”。在观察数据之前,我们可能会有一些有趣的函数型对照。
最终,我们有一些熟悉的多重比较问题,但是在这里是函数型形式。我们可能会问“在不同的气候带之间,哪一个时间区间具有显著的差异呢?”
更一般地,模型可能包含一个具有p个一般的自变量而不是0-1分类变量的设计矩阵Z,或者两种自变量都包含的设计矩阵Z。主要因为,在多元线性模型中,这两种情形本质是一样的,因此同样可以在此应用。
从一个应用的视角来说,几个普通自变量影响一个函数型因变量的问题是最常见的情况,经验告诉我们,大部分的函数型线性模型分析都是这种形式。我们将相信探讨这个模型在第13章,而且我们将试图提供尽可能多的有用的分析和推断的建议。总而言之,在处理多元数据,仅需对我们已经熟悉的工具做一些相对明显的修改以适应函数型因变量情形。

12.3 普通的因变量与一个函数型自变量

考虑下面这个问题,一个气象站的总降雨量依赖于该气象站的在一段时间内的温度特征吗?我们可以得到响应变量通过以下公式:
P r e c t o t i = ∫ 0 365 P r e c i ( t ) d t Prectot_i=\int_{0}^{365}Prec_i(t)dt Prectoti=0365Preci(t)dt
i i i表示35个气象站
现在的问题是如何对随着时间 s s s变化的单一协变量 T e m p ( s ) Temp(s) Temp(s)进行加权,通过如下的线性模型:
P r e c t o t i = α + ∫ 0 365 T e m p i ( s ) β ( s ) d s + ϵ i Prectot_i=\alpha+\int_{0}^{365}Temp_i(s)\beta(s)ds+\epsilon_i Prectoti=α+0365Tempi(s)β(s)ds+ϵi
常数 α \alpha α是一般的截距项用于调整降雨量变量的原点,我们感兴趣的仍然是回归系数函数 β \beta β.
在上式中,如果我们将每一个时间 s s s都看作是一个分离的标量自变量 T e m p ( s ) Temp(s) Temp(s),这种情况便更像是传统的多元回归,但是这是便会有无限数目的自变量,这可能是荒谬的,过拟合数据是不可避免的。
解决这个问题的方法是强迫随时间变化的信息权重足够平滑,这样我们就可以知道一个糟糕的拟合在原则上是可能的。随s变化的光滑将包含正则化的过程,我们已经在第五章样条光滑的过程中学过了,第15章将放弃这种情形的讨论。

12.4函数型因变量与函数型自变量

截面降雨量是如何基于这个关联的截面温度?现在我们考虑函数型协变量 T e m p ( s ) Temp(s) Temp(s)如何影响在特定时间t时刻的降雨量 P r e c ( t ) Prec(t) Prec(t),有以下几种可能.

12.4.1共生模型

我们仅仅使用温度在相同的时刻 s = t s =t s=t,因为我们猜想降雨量现在仅仅依赖于温度,我们的模型如下:
P r e c i ( t ) = α ( t ) + T e m p i ( t ) β ( t ) + ϵ i ( t ) Prec_i(t)=\alpha(t)+Temp_i(t)\beta(t)+\epsilon_i(t) Preci(t)=α(t)+Tempi(t)β(t)+ϵi(t)
我们通常称这个模型为共生模型或者逐点模型。我们应该使用正则化来强制 β \beta β是关于t是光滑的吗?
我们将在第14章详细探讨这个模型,在某种程度上,所有的函数型线性模型都可以简化成这种形式。

12.4.2 Annual or total(不知道怎么翻译)

我们更希望允许温度影响 P r e c ( t ) Prec(t) Prec(t)扩展到一整年上,模型扩展变为:
P r e c i ( t ) = α ( t ) + ∫ 0 365 T e m p i ( s ) β ( s , t ) d s + ϵ i ( t ) Prec_i(t)= \alpha(t)+\int_{0}^{365}Temp_i(s)\beta(s,t)ds+\epsilon_i (t) Preci(t)=α(t)+0365Tempi(s)β(s,t)ds+ϵi(t)
我们面临的是额外的复杂性,主要是因为回归系数函数 β \beta β是二元的。 β ( s , t ) \beta(s,t) β(s,t)的值决定了在时刻s的温度影响了在时刻t的降雨量。
从标量响应变量和函数型协变量的讨论中,我们怀疑关于s的函数 β \beta β的光滑是必须的,但是关于s光滑和关于t光滑之间的不同是什么呢?

12.4.3短期反馈

模型扩展为:
P r e c i ( t ) = α ( t ) + ∫ t − δ t T e m p i ( s ) β ( s , t ) d s + ϵ i ( t ) Prec_i(t)= \alpha(t)+\int_{t-\delta}^{t}Temp_i(s)\beta(s,t)ds+\epsilon_i(t) Preci(t)=α(t)+tδtTempi(s)β(s,t)ds+ϵi(t)
其中 δ \delta δ表示时间滞后我们使用的温度信息。除了二元特性之外, β \beta β仅仅被定义在某种复杂的梯形区域: t ∈ [ 0 , 365 ] , t − δ ≤ s ≤ t t\in[0,365],t-\delta\leq s \leq t t[0,365],tδst
在这种情况下,一般数据都是周期性的。在t=0时,s是负的将没有什么特别的问题因为我们可以从前一年哪里借来信息。但是对于非周期的数据,我们将移除区域内s<0所表示的三角形。

12.4.4 局部影响

如果温度首先迅速下降,之后立刻快速上升,如果时间t是在the middle of the summer,这可能是一个雷暴雨并且在短期时间内将有可能有大量的降雨,这个模型如下:
P r e c i ( t ) = α ( t ) + ∫ Ω t T e m p i ( s ) β ( s , t ) d s + ϵ i ( t ) Prec_i(t)= \alpha(t)+\int_{\Omega_t}Temp_i(s)\beta(s,t)ds+\epsilon_i(t) Preci(t)=α(t)+ΩtTempi(s)β(s,t)ds+ϵi(t)

12.5 what about predicting derivatives

我们可能建立降雨量的变化率模型 D P r e c DPrec DPrec而非降雨量自身。当一个模型被设计来解释某种阶数的导数时,称之为动力学模型。模型是一个微分方程。
当响应变量是一阶导时,比较有潜力是一个有用的协变量,例如,共生线性模型
D P r e c i ( t ) = P r e c i ( t ) β ( t ) + ϵ i ( t ) DPrec_i(t)= Prec_i(t)\beta(t)+\epsilon_{i}(t) DPreci(t)=Preci(t)β(t)+ϵi(t)
被称为是同质一阶线性微分方程,也可以包含一个温度的效应
D P r e c i ( t ) = P r e c i ( t ) β 0 ( t ) + T e m p i ( t ) β 1 ( t ) + ϵ i ( t ) DPrec_i(t)= Prec_i(t)\beta_0(t)+Temp_i(t)\beta_1(t)+\epsilon_{i}(t) DPreci(t)=Preci(t)β0(t)+Tempi(t)β1(t)+ϵi(t)
此方程称为是非同质,方程中的温度称之为强迫函数(forcing function).
本书中的最后一章主要探讨微分方程,我们将看到,函数型数据分析的能力将会这种形式得到显著的扩展。

12.6 结束语

尽管出于充分的理由,我们为这些情况专门写下单独的章节,每一种情况都包含一些专门的技术和问题,在广泛的层面上而言,上文中列出的各种模型之间的差异比实际更明显。例如,标量因变量总是被一个代有常数基函数的函数型因变量所表达,同样的对于协变量也是如此。当我们利用涉及尺度变量这一事实的算法层面时,就会出现专门的计算问题。
一个中心问题是所有的函数型线性模型都是光滑回归系数函数。函数型线性模型经常包含更大的预测能力在一个有限量的噪声数据中。决定光滑到什么程度以及如何定义光滑度自身在大部分的应用中都将是一个中心问题。
最重要的基础问题可能是关于t的特定区域 Ω t \Omega_t Ωt,共生模型和total influence模型在计算上是相对容易处理的,但是局部反馈影响通常是极其重要的,并且已经被时间序列中的的ARIMA和状态空间模型的形式很好地代表。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值