【机器学习-西瓜书】第3章-线性模型

本文深入探讨线性模型,包括一元和多元线性回归,强调最小二乘法在参数估计中的应用。进一步讲解对数几率回归,解释其在分类任务中的作用,以及如何通过极大似然估计来求解参数。线性判别分析(LDA)也作为重要概念被介绍,用于二分类问题,旨在最大化类间距离和最小化类内距离。
摘要由CSDN通过智能技术生成

3.1 基本形式

示例x由 d个属性描述,x_{i} = (x_{i1},x_{i2}, ..., x_{id})

线性模型 试图学得一个通过属性的线性组合来进行预测的函数,即

f(x) = w_{1}x_{1}+w_{2}x_{2}+ ... + w_{d}x_{d} + b \\ f(x)=w\top x + b,\ w=(w_{1}, w_{2}, ..., w_{d})

3.2 线性回归

3.2.1 一元线性回归:for regression

给定数据集 D=\{(x_{1}, y_{1}), (x_{2}, y_{2}), ..., (x_{m}, y_{m})\}

先考虑最简单的情形:输入只有一个属性,此时线性回归试图学得: f(x_{i}) = wx_{i} + b

 使得f(x_{i })\approx y_{i}

如何确定w和b?=> 让均方误差最小化,即

\left ( w^{\ast } , b^{\ast }\right ) = arg\ min_{\left ( w,b \right )}\sum_{i=1}^{m}\left ( f\left ( x_{i} \right )-y_{i} \right )^{2}\\=arg \min_{\left ( w,b \right )}\sum_{i=1}^{m}\left ( y_{i} - wx_{i}-b \right )^{2}

基于均方误差最小化进行模型求解的方法,称为“最小二乘法 (Least Square Method)”。即找到一条直线,是所有样本导致线上的欧式距离之和最小。

最小二乘“参数估计 (parameter estimation)”:求解w和b使得下式最小化的过程。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值