二 Pytorch中的asutograd

12 篇文章 5 订阅 ¥9.90 ¥99.00
本文主要介绍了PyTorch中Tensor的概念,包括如何追踪和计算梯度。当设置`.require_grad=True`,Tensor会记录所有操作,通过`.backward()`可自动计算梯度。此外,介绍了如何通过`.detach()`和`with torch.no_grad()`来停止梯度追踪,以及Tensor的操作和自动求导的相关属性。
摘要由CSDN通过智能技术生成

目录

1 tensor的概念

2 Tensor的操作

3 关于梯度Gradients


1 tensor的概念

  • 关于torch.Tensor        
    • torch.Tensor是整个package中的核心类,如果将.require_grad设置为True,它将追踪在这个类上定义的所有操作,当代吗要进行反向传播时,直接调用..backward()就可以自动计算所有的梯度,在这个Tensor上的所有梯度将被累加进属性.grad中。
    • 如果想要终止一个Tensor在计算图中的追踪回溯,只需要执行.detach()就可以将该Tensor从计算图中撤下,在未来的回溯计算中也不会继续计算此张量。
    • 除了.detach(),如果想要终止对计算图的回溯,也就是不再进行方向传播求导的过程,也可以用代码块的方式with torch.no_grad(),这种方式非常适用于对模型进行预测的时候,因为预测阶段不再需要对梯度进行计算。
  •  关于torch.Function
    • Function类是和Tensor类同等重要的一个核心类,它和tensor共同构建了一个完整的类,每个tensor拥有一个.grad_fn属性,代表引用了哪个具体的Function创建了该Tensor
    • 如果某个张量Tensor是用户自定义的,则其对应的grad_fn is None
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

OR_0295

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值