【ZT】【详细教程】WPS如何关闭自动更新和WPS热点?(ksomisc.exe)

受不了WPS三条两头的自动升级了(升级倒好,每升级一次就把经典界面给修改了!),终于决定关闭WPS的自动升级了。

C:\Users\Administrator\AppData\Local\Kingsoft\WPS Office\10.1.0.7224\office6\ksomisc.exe


https://jingyan.baidu.com/article/948f5924f63d45d80ff5f9f7.html

【详细教程】WPS如何关闭自动更新和WPS热点?

大家在使用WPS的过程中,肯定都遇到过WPS自动更新和推送WPS热点,这对我们的使用造成了不便,所以教大家如何关闭WPS自动更新和WPS热点

工具/原料

  • WPS

方法/步骤

  1. 1

    首先打开文件资源管理器【Win+E快捷键直接打开】,打开WPS的安装目录

    【详细教程】WPS如何关闭自动更新和WPS热点?
  2. 2

    打开如图所示的第一个文件夹,进入【office6】

    【详细教程】WPS如何关闭自动更新和WPS热点?
    【详细教程】WPS如何关闭自动更新和WPS热点?
  3. 3

    找到【ksomisc.exe】,或者直接搜索【ksomisc.exe】

    PS:该应用程序位WPS的配置程序

    【详细教程】WPS如何关闭自动更新和WPS热点?
  4. 4

    点击打开,点击【高级】

    【详细教程】WPS如何关闭自动更新和WPS热点?
  5. 5

    点击【升级设置】,点击选择【关闭自动升级】

    点击【其他选项】,取消【订阅WPS热点】

    PS:还可以关闭广告推送

    【详细教程】WPS如何关闭自动更新和WPS热点?
    【详细教程】WPS如何关闭自动更新和WPS热点?
  6. 6

    最后不要忘记点击【确定】。最后不要忘记点击【确定】。最后不要忘记点击【确定】。重要的事情说三遍。

    【详细教程】WPS如何关闭自动更新和WPS热点?
    END

WPS目录查找

  1. 在【文件资源管理器】中点击【此电脑】,在右上方的搜索框中输入【WPS】

    【详细教程】WPS如何关闭自动更新和WPS热点?
    【详细教程】WPS如何关闭自动更新和WPS热点?
  2. 2

    进入【WPS Office】的文件夹即可

    【详细教程】WPS如何关闭自动更新和WPS热点?
    END

注意事项

  • 前往不要直接在WPS的快捷方式里面点击【配置工具】,里面没有【升级设置】



(1) The distribution of Zt can be found by considering that it is the sum of two independent Poisson processes with parameters 1 and 2 respectively. The probability mass function of a Poisson process with parameter λ is given by: P(X=k) = (λ^k / k!) * e^(-λ) Therefore, the probability mass function of Zt is: P(Zt=k) = P(Xt+Yt=k) = Σi=0^k P(Xt=i) * P(Yt=k-i) = Σi=0^k (e^(-1) * 1^i / i!) * (e^(-2) * 2^(k-i) / (k-i)!) = e^(-3) * Σi=0^k (1^i * 2^(k-i) / (i! * (k-i)!)) = e^(-3) * Σi=0^k (k! / (i! * (k-i)!) * 1^i * 2^(k-i)) = e^(-3) * (1+2)^k / k! = e^(-3) * 3^k / k! Therefore, Zt follows a Poisson distribution with parameter 3. (2) To derive the distribution of Zt+s − Zs, we need to consider the behavior of the Poisson process over the interval [s, t+s]. We know that Zt = Xt + Yt, and that Xt and Yt are independent Poisson processes with parameters 1 and 2 respectively. Therefore: Zt+s = X(t+s) + Y(t+s) Zs = Xs + Ys Zt+s − Zs = (X(t+s) + Y(t+s)) − (Xs + Ys) = (X(t+s) − Xs) + (Y(t+s) − Ys) Since Poisson processes are memoryless, the increments X(t+s) − Xs and Y(t+s) − Ys are independent of Xs and Ys respectively. Therefore, we can treat them as independent Poisson processes with parameters 1 and 2 respectively. The difference between two independent Poisson processes with parameters λ1 and λ2 is itself a Poisson process with parameter λ1 − λ2. Therefore: Zt+s − Zs = (X(t+s) − Xs) + (Y(t+s) − Ys) = X(t+s) − Xs + Y(t+s) − Ys ~ Poisson(1+2) = Poisson(3) Therefore, Zt+s − Zs follows a Poisson distribution with parameter 3. (3) Zt+s − Zs is independent of Zs because Poisson processes are memoryless. The value of Zs tells us nothing about the future behavior of Zt+s − Zs. Therefore, Zt+s − Zs is independent of Zs.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值