矢量算法过程清晰,如果具有一定的空间几何基础,则是解决此类问题时应优先考虑的方法。当需要计算的数据量很大时,这种方式优势明显。
由于矢量具有方向性,故一些方向的判断直接根据其正负号就可以得知,使得其中的一些问题得以很简单的解决。
用此方法考虑,我们只需要找到向量 在方向上的投影,具体如下:
上面的 是方向上的单位向量,其意义是给所求向量确定方向。是的两个向量的内积,且 ,其中θ为向量AP与AB之间的夹角。是向量长度。
那么即为上图中线段AC的长度值,不带有方向性。此数值与上述表征方向的 整体构成有大小、有方向的新向量,即为 在方向上的投影向量,C为投影点。
根据得到的,由向量的方向性可知:如果情况是上图(a)所示,那么0<r<1;如果是如图(b)所示的情况,那么r ≥1;如果是如图(c)所示的情况,那么得到r ≤0;
特殊情况如点在线段上、点在端点、点在线段延长线上等等的情况全部适用于此公式,只是作为特殊情况出现,无需另作讨论。这也是矢量算法思想的优势所在。
故根据r值的不同,最短距离
(r 为 |AC|与|AB|的长度比)
转自:https://www.cnblogs.com/lyggqm/p/4651979.html