时间序列分解-预测-集成的建模思路

单变量时间序列的 分解-预测-集成 设计思路

最近对单变量时间序列的预测很痴迷, 看了一些论文以后, 发现整个建模思路很固定, 大致总结一下, 不足之处, 和大家一起讨论.

这里写图片描述
这里写图片描述
这里写图片描述
这里写图片描述
这里写图片描述
这里写图片描述
这里写图片描述

### VMD-CNN-GRU 时间序列预测方法概述 VMD (Variational Mode Decomposition) 是一种用于信号处理的技术,可以将复杂的时间序列分解成多个本征模态分量(IMF)[^1]。这些IMF能够更好地捕捉不同频率范围内的特性。CNN (Convolutional Neural Network) 则擅长于自动提取局部特征;而GRU (Gated Recurrent Unit),作为RNN的一种改进版本,在处理长时间依赖方面表现出色。 结合这三种技术的方法通常遵循以下结构: #### 1. 变分模态分解(VMD) 对于给定的时间序列数据`X(t)`,应用VMD算法将其分割为K个不同的模式组件{u_k}及其相应的中心频率ω_k: \[ \left\{\begin{array}{l} \sum_{k=1}^{K}\hat{u}_{k}(w)=Y(w), \\ \sum_{k=1}^{K}\omega_{k}=0, \end{array}\right.\] 其中\( Y(w)\ )表示原始信号的傅里叶变换形式[^1]. ```matlab % 假设已加载好时间序列数据 X [vmd_modes, omega] = vmd(X); ``` #### 2. 特征提取(CNN) 经过VMD处理后的各子带信号被送入预先训练好的CNN模型中进一步学习空间上的关联性。此阶段主要负责从各个频域内挖掘潜在规律并压缩维度至更易于后续分析的状态向量。 ```python def fxttseact_cnn_ffseatutft(vmd_modes): features = [] for mode in vmd_modes: feature = cnn_model.predict(mode.reshape(-1, 1)) features.append(feature) return np.array(features).reshape(len(vmd_modes), -1) ``` #### 3. 序列建模(GRU) 最后一步是利用GRU网络对由前两步获得的信息流做时序上的解析。由于GRUs具备记忆功能,因此非常适合用来追踪随时间变化的趋势和发展方向。 ```python gru_input_shape = (None, num_features) # 输入形状取决于具体应用场景下的参数设置 model.add(layers.GRU(units=hidden_units, input_shape=gru_input_shape)) model.add(Dense(output_dim)) # 输出层配置依据实际需求调整 ``` 整个工作流程如下图所示: ![vmd-cnn-gru](https://example.com/vmd-cnn-gru.png) *注意:此处图片链接仅为示意* 上述过程展示了如何集成VMD、CNN以及GRU三个模块完成一次典型的时间序列预测任务。当然,在实践中还需要考虑诸如超参调优、交叉验证等一系列优化措施来提升最终效果。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值