【深度学习基础】从零开始的炼丹生活06——深度学习中的正则化

往期回顾:
03——支持向量机以及核方法
04——从传统机器学习走向深度学习
05——深度前馈网络、神经网络概述

上一节我们说了神经网络设计的基本组件和过程,下面我们再学习一下正则化策略。(主要参考《深度学习》)


深度学习模型不仅要在训练数据上表现好,还要能在新的输入上泛化很好。因此有许多策略被显式地设计来减少测试误差(可能以增大训练误差为代价)。这些策略被称为正则化。

一、参数范数惩罚

许多正则化方法通过对目标函数 J J J添加一个参数范数惩罚 Ω ( θ ) \Omega(\theta) Ω(θ)。限制模型的学习能力。即: J ~ ( θ ; X , y ) = J ( θ ; X , y ) + α Ω ( θ ) \tilde J(\boldsymbol{\theta;X,y})=J(\boldsymbol{\theta;X,y})+\alpha\Omega(\boldsymbol \theta) J~(θ;X,y)=J(θ;X,y)+αΩ(θ)其中 α \alpha α是超参数,越大对应的正则化惩罚越大。

我们通常只对权重作惩罚而不对偏置惩罚,因为精确拟合偏置所需的数据远少于权重,因此我们不惩罚它也不会造成太大误差。此外,如果正则化偏置参数可能导致明显的欠拟合。

同时,由于神经网络的层数很多,我们一般会在所有层使用相同参数的权重衰减。

1. L 2 L^2 L2参数正则化

通常被称为权重衰减的 L 2 L^2 L2参数范数惩罚,这个策略是 Ω ( θ ) = 1 2 ∥ w ∥ 2 2 \Omega(\theta)={1\over 2}\|w\|^2_2 Ω(θ)=21w22,使权重更接近原点(接近其他点也同样有正则效果,且越接近真实值越好,但一般我们不知道真实值,因此通常选择原点)。有些文章也可能将 L 2 L^2 L2称为岭回归或 Tikhonov 正则。
因此目标函数变为:
J ~ ( θ ; X , y ) = J ( θ ; X , y ) + α 2 w T w \tilde J(\boldsymbol{\theta;X,y})=J(\boldsymbol{\theta;X,y})+{\alpha \over 2}w^Tw J~(θ;X,y)=J(θ;X,y)+2

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值