【深度学习基础】从零开始的炼丹生活08——卷积网络

本文介绍了卷积网络(CNN)的基础知识,包括卷积运算、使用卷积的动机(稀疏交互、参数共享、等变表示)、池化、基本卷积函数的变体和经典网络(如LeNet-5、AlexNet、VGG-16、ResNets和Inception)。卷积网络通过卷积运算和池化实现特征检测和图像处理,适用于图像识别等任务。
摘要由CSDN通过智能技术生成

往期回顾:
05——深度前馈网络、神经网络概述
06——深度学习中的正则化
07——深度模型中的优化

学习了基本的神经网络结构,以及如何进行正则化和优化之后,我们接下来转向特化的神经网络家族,允许其扩展到能够处理很大规模的数据和具有特殊结构的数据。(主要参考《深度学习》和cousera上吴恩达的课程)


卷积网络(convolutional network),也叫卷积神经网络(CNN),是一种专门用来处理具有类似网络结构的数据的神经网络。例如时间序列(一维网格)和图像数据(二维网格)。CNN 使用了卷积这种数学运算,卷积网络是指至少在网络的一层中使用卷积运算来替代一般的矩阵乘法运算的神经网络。卷积网络结构的研究进展十分迅速,针对特定基准(benchmark),几周就会有一个新的最优的网络结构。但所有的网络结构都是由基本部件逐步搭建起来的。

一、卷积运算

通常,卷积是对两个实变函数的一种运算。卷积运算通常用星号表示。
s ( t ) = ∫ x ( a ) w ( t − a ) d a = ( x ∗ w ) ( t ) . s(t) = \int x(a)w(t-a)da = (x*w)(t). s(t)=x(a)w(ta)da=(xw)(t).卷积的第一个参数(x)称为输入,第二个参数(w)称为核函数,输出有时称作特征映射

离散形式的卷积定义如下:
s ( t ) = ( x ∗ w ) ( t ) = ∑ a = − ∞ ∞ x ( a ) w ( t − a ) . s(t) = (x*w)(t) = \sum_{a = -\infty}^{\infty} x(a)w(t-a). s(t)=(xw)(t)=a=</

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值