统计概率学习(二)协方差、协方差矩阵

一、协方差

协方差的定义如下:
数值 E [ X − E ( x ) ] [ Y − E ( Y ) ] E{[X-E(x)][Y-E(Y)]} E[XE(x)][YE(Y)]为随机变量X与Y的协方差,记为Cov(X,Y),即
C o v ( X , Y ) = E [ X − E ( x ) ] [ Y − E ( Y ) ] Cov(X,Y)=E{[X-E(x)][Y-E(Y)]} Cov(X,Y)=E[XE(x)][YE(Y)].
对于D(X+Y),我们有
D ( X + Y ) = E ( ( ( X + Y ) − E ( X + Y ) ) 2 ) = E ( ( ( X − E ( X ) + ( Y − E ( Y ) ) 2 ) = E ( ( X − E ( X ) ) 2 + ( Y − E ( Y ) ) 2 + 2 ∗ ( X − E ( X ) ( Y − E ( Y ) ) ) ) = D ( X ) + D ( Y ) + 2 E ( ( X − E ( X ) ) ( Y − E ( Y ) ) ) = D ( X ) + D ( Y ) + 2 C o v ( X , Y ) D(X+Y)=E(((X+Y)-E(X+Y))^2) \\ =E(((X-E(X)+(Y-E(Y))^2) \\ =E((X-E(X))^2+(Y-E(Y))^2 \\ +2*(X-E(X)(Y-E(Y)))) \\=D(X)+D(Y)+2E((X-E(X))(Y-E(Y))) \\ =D(X)+D(Y)+2Cov(X,Y) D(X+Y)=E(((X+Y)E(X+Y))2)=E(((XE(X)+(YE(Y))2)=E((XE(X))2+(YE(Y))2+2(XE(X)(YE(Y))))=D(X)+D(Y)+2E((XE(X))(YE(Y)))=D(X)+D(Y)+2Cov(X,Y)
当X,Y独立时, D ( X + Y ) = D ( X ) + D ( Y ) D(X+Y)=D(X)+D(Y) D(X+Y)=D(X)+D(Y)
协方差反映了随机变量X与Y的线性相关性。

  • C o v ( X , Y ) > 0 , X 与 Y 正 相 关 Cov(X,Y)>0,X与Y正相关 Cov(X,Y)>0,XY
  • C o v ( X , Y ) = 0 , X 与 Y 不 相 关 Cov(X,Y)=0,X与Y不相关 Cov(X,Y)=0,XY
  • C o v ( X , Y ) &lt; 0 , X 与 Y 负 相 关 Cov(X,Y)&lt;0,X与Y负相关 Cov(X,Y)<0,XY
    独立一定不相关,不相关不一定独立
    相关性指的是线性相关性,随机变量之间可能存在非线性关系,比如 X = Y 2 X=Y^2 X=Y2
    协方差是有量纲的数字特征,为了消除其量纲的影响,引入一个新概念:
    定义:数值 ρ x y = C o v ( X , Y ) D ( X ) D ( Y ) \rho_{xy}=\frac{Cov(X,Y)}{\sqrt{D(X)D(Y)}} ρxy=D(X)D(Y) Cov(X,Y)
    称为随机变量X与Y的相关系数,是没有量纲的。
    性质
  • ∣ ρ x y ∣ ≤ 1 |\rho_{xy}|\leq1 ρxy1
  • ∣ ρ = 1 ∣ ↔ |\rho=1|\leftrightarrow ρ=1存在常数a,b,使得 P ( Y = a + b X ) = 1 P(Y=a+bX)=1 P(Y=a+bX)=1
  • ∣ ρ ∣ |\rho| ρ较大时,表明X与Y的线性相关程度较好;当 ∣ ρ ∣ = 1 |\rho|=1 ρ=1,表明X与Y以概率1存在线性关系。

二、协方差矩阵

定义:设 X = ( X 1 , X 2 , . . . , X M ) T X=(X_1,X2,...,X_M)^T X=(X1,X2,...,XM)T为m维随机变量,称矩阵
[ c 11 c 12 . . . c 1 m c 21 c 22 . . . c 2 m . . . . . . . . . c m 1 c m 2 . . . c m m ] \left[ \begin{matrix} c_{11} &amp; c_{12} &amp; ...&amp; c_{1m}\\ c_{21}&amp; c_{22} &amp; ... &amp; c_{2m}\\ . &amp; . &amp; &amp; . &amp; \\ . &amp; . &amp; &amp; . &amp; \\ . &amp; . &amp; &amp; . &amp; \\ c_{m1} &amp; c_{m2} &amp; ... &amp; c_{mm} \end{matrix} \right] c11c21...cm1c12c22...cm2.........c1mc2m...cmm
为m维随机变量的协方差矩阵,记为D(X),其中, c i j = C o v ( X i , X j ) , i , j = 1 , 2 , . . . , m c_{ij}=Cov(X_i,X_j),i,j=1,2,...,m cij=Cov(Xi,Xj),i,j=1,2,...,m
为X的分量 X i X_i Xi X j X_j Xj的协方差。
假设有n个样本数据,每个样本数据有m个分量(或者说是m个特征),将其表示为矩阵即是 S ∈ R n ∗ m S\in R^{n*m} SRnm, 假设 β \beta β为其行向量,则 S = [ β 1 , β 2 , . . . , β n ] T S=[\beta_1,\beta_2,...,\beta_n]^T S=[β1,β2,...,βn]T,
样本协方差矩阵可用矩阵运算表示,
D ( X ) = 1 n − 1 ∑ i = 1 n ( β i − β ˉ ) T ( β i − β ˉ ) D(X)=\frac{1}{n-1}\sum_{i=1}^{n}(\beta_i-\bar{\beta})^T(\beta_i-\bar{\beta}) D(X)=n11i=1n(βiβˉ)T(βiβˉ)
β ˉ \bar{\beta} βˉ β \beta β的均值,也是一个行向量。
记忆公式的时候根据协方差矩阵的维度来记,前面的系数为n-1,n为样本数量,这是因为样本的均值并不是实际变量的均值,所以要进行修正,这和样本方差的计算是一致的。由于每个样本数据有m个维度(或者说特征),所以最后的矩阵维度一定是m*m。

  • 5
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值