法卡斯定理(Fakars' Lemma)

定义

  最近在研究WGAN,其中的Wasserstein distance的求解需要用到法卡斯定理,于是特意去了解了一下,也算是对线性代数知识的一个补充。
  法卡斯定理如下:
∃ x ∈ R n , A x = b   a n d   x ≥ 0   or   ∃ y ∈ R d , A T y ≤ 0   a n d   b T y > 0 \exists x \in R^n,Ax=b \ and \ x\ge0 \ \textbf{or} \ \exists y \in R^d, A^Ty \le 0 \ and \ b^Ty \gt 0 xRn,Ax=b and x0 or yRd,ATy0 and bTy>0

其中, A ∈ R d × n A \in R^{d\times n} ARd×n, x ∈ R n x\in R^n xRn, b ∈ R d b\in R^d bRd.
  接下来我们将证明整个定理。

背景知识

  在证明这个定理之前,我们先来了解几个概念。

  • 凸集(Convex set)

    在n维空间中,x与y的线段(line segment)定义如下:
    x , y ∈ R n , [ x , y ] : = λ x + ( 1 − λ ) y ∣ λ ∈ [ 0 , 1 ] x,y\in R^n, [x,y]:={\lambda x+(1-\lambda)y| \lambda \in [0,1]} x,yRn,[x,y]:=λx+(1λ)yλ[0,1]

    凸集定义如下:
    ∀ x , y ∈ C , [ x , y ] ⊆ C , C ⊆ R n \forall x,y \in C, [x,y] \subseteq C, C \subseteq R^n x,yC,[x,y]C,CRn

    满足上述条件,则C为凸集。
    图示如下:
    示例
    上图中左图为凸集,右图不是凸集。

  • 分离定理(Separation theorem)

    A ⊆ R n , B ⊆ R n A\subseteq R^n,B\subseteq R^n ARn,BRn是不相交的非空凸集,存在一个非零向量v和实数c,使得 ⟨ x , v ⟩ ≥ c a n d ⟨ y , v ⟩ ≤ c \langle x,v \rangle \ge c \quad and \quad \langle y,v\rangle \le c x,vcandy,vc
    其中, x ∈ A , y ∈ B x\in A,y\in B xA,yB,超平面为 ⟨ ⋅ , v ⟩ = c \langle \cdot ,v\rangle =c ,v=c,v是法向量。

  • 凸锥(Convex Cone)

    了解凸锥之前我们先来了解一下锥
    对于向量空间V,C是V的子集,如果满足
    ∀ x ∈ C   a n d   α > 0 , α x ∈ C \forall x\in C\ and \ \alpha >0, \alpha x\in C xC and α>0,αxC
    那么C是锥。
    对于锥C,如果满足
    ∀ x , y ∈ C   a n d   α , β ≥ 0 , α x + β y ∈ C \forall x,y\in C\ and\ \alpha,\beta \ge 0, \alpha x+\beta y \in C x,yC and α,β0,αx+βyC
    那么C是凸锥。

证明

给定矩阵 A ⊆ R d × n A\subseteq R^{d\times n} ARd×n,我们将其看作n个向量 a 1 , . . . , a n ∈ R d a_1,...,a_n\in R^d a1,...,anRd,给定 x ∈ R n ( x > 0 ) x\in R^n(x>0) xRn(x>0), 于是我们得到了一个凸锥 A x , ∀ x > 0 Ax,\forall x\gt 0 Ax,x>0
在这里插入图片描述
对于一个向量 b ∈ R d b\in R^d bRd,有两种可能,b在上述的凸锥中;b不在上述凸锥中。如果b不再凸锥中,那么我们可以找到一个经过原点的超平面h,h位于b和凸锥之间,h的法向量为 y ∈ R d y\in R^d yRd。b和y处于h的同侧,而凸锥则在h的另一侧,那么我们有 b T y &gt; 0 b^Ty\gt0 bTy>0,同时, a i T y &lt; 0 a_i^Ty\lt 0 aiTy<0.在这里插入图片描述
总结以上两种情况,

  • ∃ x ∈ R n , A x = b   a n d   x ≥ 0 \exists x \in R^n,Ax=b \ and \ x\ge0 xRn,Ax=b and x0
  • ∃ y ∈ R d , A T y ≤ 0   a n d   b T y &gt; 0 \exists y \in R^d, A^Ty \le 0 \ and \ b^Ty \gt 0 yRd,ATy0 and bTy>0

参考资料

  • 8
    点赞
  • 17
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值