参考:
完整代码点击此处
Pascal VOC 2007数据下载
wget http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCtrainval_06-Nov-2007.tar
wget http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCtest_06-Nov-2007.tar
wget http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCdevkit_08-Jun-2007.tar
# 执行以下命令将解压到一个名为VOCdevkit的目录中
tar xvf VOCtrainval_06-Nov-2007.tar
tar xvf VOCtest_06-Nov-2007.tar
tar xvf VOCdevkit_08-Jun-2007.tar
数据预览
1、VOC2007/Annotations
类别名与对象的矩形框位置
2、VOC2007/JPEGImages
3、VOC2007/SegmentationClass
4、VOC2007/SegmentationObject
Pascal_VOC_2007_data.py
解析图片与mask路径
class ShapesDataset(object):
def __init__(self, SegmentationClass='./VOCdevkit/VOC2007/SegmentationClass/*.png',
JPEGImages='./VOCdevkit/VOC2007/JPEGImages'):
'''
:param SegmentationClass: Mask 路径
:param JPEGImages: JPG路径
'''
self.image_info = []
self.SegmentationClass=SegmentationClass
self.JPEGImages=JPEGImages
# self.height=224
# self.width = 224
def add_image(self, f, annotation_file, **kwargs):
image_info = {
"image": f, # JPG 路径
"annotation": annotation_file, # 对应mask路径
}
image_info.update(kwargs)
self.image_info.append(image_info)
def load_shapes(self,count):
'''加载图像和对应的Mask的路径(没有事先解析成numpy)'''
Class_path = glob.glob(self.SegmentationClass)
np.random.shuffle(Class_path) # 数据随机打乱
for num, path in enumerate(Class_path):
# 进度输出
sys.stdout.write('\r>> Converting image %d/%d' % (
num + 1, len(Class_path)))
sys.stdout.flush()
file_name = path.split('/')[-1].split('.')[0]
# 对应JPG
image_path = os.path.join(self.JPEGImages, file_name + '.jpg')
self.add_image(f=image_path, annotation_file=path)
if (num+1)==count:
break
sys.stdout.write('\n')
sys.stdout.flush()
BatchDatsetReader.py
修改的地方
# self.annotations = np.array(
#[np.expand_dims(self._transform(filename['annotation']), axis=3) for filename in self.files]) # [h,w,1]
self.annotations = np.array([self._transform(filename['annotation']) for filename in self.files]) # [h,w,3]
self.annotations=np.expand_dims(np.argmax(self.annotations,axis=-1),-1) # [h,w,1]
FCN_Pascal_VOC_2007_data.py
基本上是FCN_shape_data.py
修改的地方
NUM_OF_CLASSESS = 21 # 因为Pascal_VOC_2007是20个类,加上背景 21
# 其他的基本不变
train
python3 FCN_Pascal_VOC_2007_data.py
test
python3 FCN_Pascal_VOC_2007_data.py --mode visualize
运行结果
运行的时间比较短,只能大致看到一些轮廓

本文介绍如何使用 TensorFlow 处理 Pascal VOC 2007 数据集,包括数据下载、解压、预览及图像与 mask 的路径解析等步骤,并通过 Python 脚本实现数据集的加载。
1128

被折叠的 条评论
为什么被折叠?



