7-8 矩阵连乘问题 (10 分)
给定n个矩阵{A1,A2,…,An}(n<=40),其中Ai与Ai+1是可乘的,i=1,2…,n。第i个矩阵的维数用pi−1,pi来表示。如何确定计算矩阵连乘积的计算次序,使得依此次序计算矩阵连乘积需要的数乘次数最少。例如,给定三个连乘矩阵{A1,A2,A3}的维数 数组p为:10,100,5,50,即分别是10 ×100,100×5和5×50,采用(A1A2)A3,乘法次数为10×100×5+10×5×50=7500次,而采用A1(A2A3),乘法次数为100×5×50+10×100×50=75000次乘法,显然,最好的次序是(A1A2)A3,乘法次数为7500次。
输入格式:
输入有两行。第一行一个n表示矩阵的个数;第二行有n+1个数,分别为p0,p1…pn。
输出格式:
一个数,表示最少的乘法次数。
输入样例:
6
30 35 15 5 10 20 25
输出样例:
15125
#include <bits/stdc++.h>
using namespace std;
int m[41][41];
int p[41];
int main()
{
int n;
cin>>n;
int i,j,k,q;
for (i=0;i<=n;i++){
cin>>p[i];
}
for (i=n;i>=1;i--){
for (j=i+1;j<=n;j++){
m[i][j]=1e9;
for (k=i;k<j;k++){
q=m[i][k]+m[k+1][j]+p[i-1]*p[k]*p[j];
if(q<m[i][j]){
m[i][j]=q;
}
}
}
}
cout<<m[1][n]<<endl;
return 0;
}