7-8 矩阵连乘问题 (10 分)

7-8 矩阵连乘问题 (10 分)
给定n个矩阵{A1,A2,…,An}(n<=40),其中Ai与Ai+1是可乘的,i=1,2…,n。第i个矩阵的维数用pi−1,pi来表示。如何确定计算矩阵连乘积的计算次序,使得依此次序计算矩阵连乘积需要的数乘次数最少。例如,给定三个连乘矩阵{A1,A2,A3}的维数 数组p为:10,100,5,50,即分别是10 ×100,100×5和5×50,采用(A1A2)A3,乘法次数为10×100×5+10×5×50=7500次,而采用A1(A2A3),乘法次数为100×5×50+10×100×50=75000次乘法,显然,最好的次序是(A1A2)A3,乘法次数为7500次。

输入格式:
输入有两行。第一行一个n表示矩阵的个数;第二行有n+1个数,分别为p0,p1…pn。

输出格式:
一个数,表示最少的乘法次数。

输入样例:
6
30 35 15 5 10 20 25

输出样例:
15125

#include <bits/stdc++.h>
using namespace std;
int m[41][41];
	int p[41];
int main()
{
	int n;
	cin>>n;
	
	int i,j,k,q;
	for (i=0;i<=n;i++){
		cin>>p[i];
	}
	for (i=n;i>=1;i--){
		for (j=i+1;j<=n;j++){
			m[i][j]=1e9;
			for (k=i;k<j;k++){
			    q=m[i][k]+m[k+1][j]+p[i-1]*p[k]*p[j];
				if(q<m[i][j]){
					m[i][j]=q;
				}	
			}
		}
	}
	cout<<m[1][n]<<endl;
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

关迪迪屁事.

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值