题目
HZ偶尔会拿些专业问题来忽悠那些非计算机专业的同学。今天测试组开完会后,他又发话了:在古老的一维模式识别中,常常需要计算连续子向量的最大和,当向量全为正数的时候,问题很好解决。但是,如果向量中包含负数,是否应该包含某个负数,并期望旁边的正数会弥补它呢?例如:{6,-3,-2,7,-15,1,2,2},连续子向量的最大和为8(从第0个开始,到第3个为止)。给一个数组,返回它的最大连续子序列的和,你会不会被他忽悠住?(子向量的长度至少是1)
解法一:动态规划
解析:
- f(i) 表示以第 i 个数为结尾的连续数组之和,
- 当 f(i-1) <= 0 时,则 f(i-1) + array[i] <= array[i] 恒成立,当且仅当 f(i - 1) == 0时,取等号。array[i] 加了 f(i-1) 后会变小,还不如不加 f(i-1)。
- 当 f(i-1) > 0 时,array[i] 加了 f(i-1) 后,一定会比 自身大,所以就加上 f(i-1)。
class Solution {
private:
bool invalidInput = false;
public:
int FindGreatestSumOfSubArray(vector<int> array) {
if(array.size()<=0)
{
invalidInput = true;
return 0;
}
vector<int>dp(array.size());
dp[0] = array[0];
for(int i=1; i<array.size(); i++)
{
if(i==0 || dp[i-1] <= 0)
dp[i] = array[i];
if(dp[i-1] > 0)
dp[i] = dp[i-1] + array[i];
}
sort(dp.begin(), dp.end());
return dp[dp.size()-1];
}
};