大模型引领未来:探索其在多个领域的深度应用与无限可能【第三章、医疗领域:大模型助力医疗健康创新】

4 篇文章 0 订阅
1 篇文章 0 订阅

大模型引领未来:探索其在多个领域的深度应用与无限可能【第三章、医疗领域:大模型助力医疗健康创新】

本系类文章列表:

这是一个系列的文章,由于章节众多,因此构建目录导航业,方便大家检索,以下为本系列文章目录,文章持续更新,能点击则表明文章已经完成。

一、引言:大模型的时代已经来临
二、金融领域:大模型重塑金融生态
三、医疗领域:大模型助力医疗健康创新
四、教育领域:大模型推动教育变革
五、广告营销与文化娱乐:大模型创造无限可能
六、法律智能化:大模型引领未来法律服务与司法实践
七、大模型在科技、网络安全、农业等方面的应用探索

三、医疗领域:大模型助力医疗健康创新

随着大数据和人工智能技术的飞速发展,大型深度学习模型(大模型)在医疗领域的应用越来越广泛。这些大模型不仅能够帮助医生进行更准确的病例分析和辅助诊断,还能加速药物研发与临床试验,以及实现患者管理与健康监测的个性化。下面将详细探讨大模型在医疗领域的这三个方面的应用。

1.病例分析与辅助诊断的智能化

医疗领域的病例分析和诊断过程通常需要医生浏览大量的医学文献、影像资料和患者历史记录,以做出准确的诊断。大型模型可以帮助医生更快速地分析和理解这些信息,提供辅助诊断的智能化工具。

  • 影像识别与分析:利用深度学习技术,大型模型可以对医学影像(如X光、MRI和CT扫描图像)进行自动分析和识别。这种技术可以帮助医生更快速地发现病灶、标记异常区域,并辅助诊断各种疾病,如肿瘤、骨折和脑卒中等。
  • 病历文本分析:大型自然语言处理模型可以处理和分析医学文本数据,例如临床记录、实验室报告和病理学描述。通过对这些文本进行智能化分析,可以帮助医生更快速地了解患者的病情和历史,辅助诊断和制定治疗方案。

将大模型应用于病例分析与辅助诊断的智能化上的公司或机构不在少数,以下是其中的一些例子:

  • 深睿医疗:该公司推出了名为Deepwise MetAI的大模型。这个模型主要融合了计算机视觉、NLP、深度学习等前沿技术,针对影像科日常应用产生的数据进行结构化处理,形成优质的数据资产。它可以在技师、医生、科室的管理者之间自由流通,实现重建、打印、诊断、会诊、教学、科研的一站式影像数智化。在细分垂直领域上,Deepwise MetAI更侧重于医学影像的智能化分析和辅助诊断。
  • 智云健康:该公司基于大数据平台、机器学习平台等,开发出了名为ClouD GPT的医疗行业模型。这个模型已经应用于智云AI辅助诊断和AI药物、器械研发的医疗应用场景。因此,ClouD GPT在病例分析与辅助诊断以及药物研发等多个细分垂直领域都有所涉及。
  • 上海联通:该公司携手华山医院、上海超算中心等单位发布了名为Uni-talk的医疗算网大模型。这个模型在医疗领域有着广泛的应用,特别是在手术病历撰写等方面,体现了其在病例分析与辅助诊断方面的能力。
  • 华大智造:该公司致力于医疗人工智能领域,开发了名为"Deepwise DR"的大型模型,用于糖尿病性视网膜病变的辅助诊断。
  • 睿睛医疗:睿睛医疗专注于眼科医疗人工智能,在眼科影像诊断领域使用大型模型,例如名为"RetinAI"的系统用于视网膜疾病的辅助诊断。
  • 优图医疗:优图医疗是中国领先的医疗人工智能公司之一,他们开发了名为"ET Medical Brain"的大型模型,用于肺部影像诊断、乳腺癌筛查等。

2.药物研发与临床试验的加速

大型模型在药物研发和临床试验中的应用可以加速新药物的发现和上市过程。

  • 药物设计与虚拟筛选:利用大型模型和深度学习技术,可以进行药物分子结构的预测、模拟和优化,从而加速药物设计和虚拟筛选过程。这有助于降低新药研发的成本和时间。
  • 临床试验数据分析:大型模型可以处理和分析临床试验中产生的海量数据,包括患者病历数据、生物标志物数据和基因组数据等。通过对这些数据进行智能化分析,可以发现新的治疗方法和药物靶点,提高临床试验的效率和成功率。

在药物研发和临床试验加速方向,一些公司和机构正在利用大型模型技术,如下是国内外的一些例子:

国外:

  • Insilico Medicine
    研究内容:Insilico Medicine致力于利用人工智能和深度学习加速药物研发,包括药物设计、虚拟筛选和临床试验数据分析。
    模型名称:他们开发了一系列模型,其中包括GAN (Generative Adversarial Networks)、VAE (Variational Autoencoders)等,用于药物分子生成、生物活性预测和临床试验设计。

  • Recursion Pharmaceuticals
    研究内容:Recursion Pharmaceuticals致力于利用机器学习技术进行高通量药物筛选和药物研发。他们使用大型模型对细胞影像数据进行分析,并预测药物与疾病之间的关联。
    模型名称:他们的核心技术包括Revolutionary Machine Learning Platform(RMLP),该平台使用了深度学习技术。

  • BenevolentAI
    研究内容:BenevolentAI利用人工智能技术加速药物研发和临床试验,他们的平台整合了大量生物医学数据,并利用深度学习模型进行数据分析和药物发现。
    模型名称:他们的核心技术包括知识图谱和深度学习模型,用于药物发现、临床试验设计和药物再利用等方面。

国内:

  • 百度:百度在药物研发领域也有深入的研究。他们利用大模型技术对药物分子进行预测、模拟和优化,提高药物设计的效率和准确性。同时,百度的大模型还能处理临床试验中的海量数据,帮助发现新的治疗方法和药物靶点。
  • 腾讯:腾讯在医疗领域也有深入的布局,其大模型技术在药物研发方面发挥了重要作用。他们通过大模型对药物进行虚拟筛选,大大降低了新药研发的成本和时间。同时,腾讯还利用大模型技术对临床试验数据进行分析,提高了试验的效率和成功率。
  • 阿里云:阿里云的大模型技术在医疗领域也有广泛的应用。他们利用大模型对药物分子结构进行预测和优化,提高了药物设计的精度。此外,阿里云还利用大模型对临床试验数据进行智能化分析,帮助医生更好地了解药物效果和患者反应。

3.患者管理与健康监测的个性化

大型模型在患者管理和健康监测方面的应用可以实现个性化的医疗服务和健康管理。

  • 个性化诊疗建议:利用大型模型分析患者的临床数据、基因组数据和生活习惯等信息,可以为每位患者提供个性化的诊疗建议和治疗方案,以提高治疗效果和患者满意度。
  • 健康数据监测与预测:大型模型可以分析患者的健康数据,如生命体征、运动数据和睡眠质量等,实时监测患者的健康状况,并预测可能发生的健康风险。这有助于及早发现和预防疾病,提高患者的健康水平和生活质量。

通过以上应用,大型模型可以为医疗健康领域带来更智能化、个性化和高效的解决方案,推动医疗创新和健康管理的发展。

将大模型或人工智能技术应用到患者管理与健康监测的公司有很多,举例如下:

  • 京东健康:京东健康发布了医疗大模型“京医千询”。这个模型基于百万级大规模健康知识图谱,沉淀了亿级的覆盖线上、线下医患场景的高质量健康档案,并拥有海量的医药全域流通大数据。京医千询支持使用辅助插件和健康管理工具,帮助医生更好地应对复杂的病情和医疗场景,为患者提供覆盖全流程的医疗健康服务,包括健康监测、风险评估、疾病诊断、药械治疗以及诊后追踪和康护管理。
  • 微脉:微脉携手百度优先内测“文心一言”在全病程管理领域的应用,利用类ChatGPT人工智能技术,在院前、院中、院后服务的各个环节中进行技术创新与能力孵化,与公立医院一起共同为患者提供连续、便捷的医疗健康服务。
  • 科大讯飞:科大讯飞基于星火认知大模型升级了讯飞医疗诊后康复管理平台,该平台能够将专业的诊后管理和康复指导延伸到院外。根据患者健康画像自动分析,为患者智能生成个性化康复计划,并督促患者按计划执行。目前,该平台在试点中已取得显著效果,提高了医生的管理效率,患者康复过程中的随访率和咨询回复率也达到了很高的水平。

大模型在医疗领域的应用为医疗健康创新提供了强大的支持。通过智能化病例分析、加速药物研发与临床试验以及实现患者管理与健康监测的个性化,大模型将有助于提高医疗服务的效率和质量,为人们的健康福祉做出更大的贡献。

4.医疗领域大模型清单

截至本文落成之日,有以下是在医疗领域涌现的中文大模型:

  • DoctorGLM
    地址:https://github.com/xionghonglin/DoctorGLM
    简介:基于 ChatGLM-6B的中文问诊模型,通过中文医疗对话数据集进行微调,实现了包括lora、p-tuningv2等微调及部署

  • BenTsao
    地址:https://github.com/SCIR-HI/Huatuo-Llama-Med-Chinese
    简介:开源了经过中文医学指令精调/指令微调(Instruct-tuning) 的LLaMA-7B模型。通过医学知识图谱和GPT3.5 API构建了中文医学指令数据集,并在此基础上对LLaMA进行了指令微调,提高了LLaMA在医疗领域的问答效果。

  • BianQue
    地址:https://github.com/scutcyr/BianQue
    简介:一个经过指令与多轮问询对话联合微调的医疗对话大模型,基于ClueAI/ChatYuan-large-v2作为底座,使用中文医疗问答指令与多轮问询对话混合数据集进行微调。

  • HuatuoGPT
    地址:https://github.com/FreedomIntelligence/HuatuoGPT
    简介:开源了经过中文医学指令精调/指令微调(Instruct-tuning)的一个GPT-like模型

  • Med-ChatGLM
    地址:https://github.com/SCIR-HI/Med-ChatGLM
    简介:基于中文医学知识的ChatGLM模型微调,微调数据与BenTsao相同。

  • QiZhenGPT
    地址:https://github.com/CMKRG/QiZhenGPT
    简介:该项目利用启真医学知识库构建的中文医学指令数据集,并基于此在LLaMA-7B模型上进行指令精调,大幅提高了模型在中文医疗场景下效果,首先针对药品知识问答发布了评测数据集,后续计划优化疾病、手术、检验等方面的问答效果,并针对医患问答、病历自动生成等应用展开拓展。

  • ChatMed
    地址:https://github.com/michael-wzhu/ChatMed
    简介:该项目推出ChatMed系列中文医疗大规模语言模型,模型主干为LlaMA-7b并采用LoRA微调,具体包括ChatMed-Consult : 基于中文医疗在线问诊数据集ChatMed_Consult_Dataset的50w+在线问诊+ChatGPT回复作为训练集;ChatMed-TCM : 基于中医药指令数据集ChatMed_TCM_Dataset,以开源的中医药知识图谱为基础,采用以实体为中心的自指令方法(entity-centric self-instruct),调用ChatGPT得到2.6w+的围绕中医药的指令数据训练得到。

  • XrayGLM,首个会看胸部X光片的中文多模态医学大模型:
    地址:https://github.com/WangRongsheng/XrayGLM
    简介:该项目为促进中文领域医学多模态大模型的研究发展,发布了XrayGLM数据集及模型,其在医学影像诊断和多轮交互对话上显示出了非凡的潜力。

  • MeChat,中文心理健康支持对话大模型:
    地址:https://github.com/qiuhuachuan/smile
    简介:该项目开源的中文心理健康支持通用模型由 ChatGLM-6B LoRA 16-bit 指令微调得到。数据集通过调用gpt-3.5-turbo API扩展真实的心理互助 QA为多轮的心理健康支持多轮对话,提高了通用语言大模型在心理健康支持领域的表现,更加符合在长程多轮对话的应用场景。

  • MedicalGPT
    地址:https://github.com/shibing624/MedicalGPT
    简介:训练医疗大模型,实现包括二次预训练、有监督微调、奖励建模、强化学习训练。发布中文医疗LoRA模型shibing624/ziya-llama-13b-medical-lora,基于Ziya-LLaMA-13B-v1模型,SFT微调了一版医疗模型,医疗问答效果有提升,发布微调后的LoRA权重。

  • Sunsimiao
    地址:https://github.com/thomas-yanxin/Sunsimiao
    简介:Sunsimiao是一个开源的中文医疗大模型,该模型基于baichuan-7B和ChatGLM-6B底座模型在十万级高质量的中文医疗数据中微调而得。

  • ShenNong-TCM-LLM
    地址:https://github.com/michael-wzhu/ShenNong-TCM-LLM
    简介:该项目开源了ShenNong中医药大规模语言模型,该模型以LlaMA为底座,采用LoRA (rank=16)微调得到。微调代码与ChatMed代码库相同。此外该项目还开源了中医药指令微调数据集。

  • SoulChat
    地址:https://github.com/scutcyr/SoulChat
    简介:该项目开源了经过百万规模心理咨询领域中文长文本指令与多轮共情对话数据联合指令微调的心理健康大模型灵心(SoulChat),该模型以ChatGLM-6B作为初始化模型,进行了全量参数的指令微调。

  • CareGPT
    地址:https://github.com/WangRongsheng/CareGPT
    简介:该项目开源了数十个公开可用的医疗微调数据集和开放可用的医疗大语言模型,包含LLM的训练、测评、部署等以促进医疗LLM快速发展。

  • DISC-MedLLM
    地址:https://github.com/FudanDISC/DISC-MedLLM
    简介:该项目是由复旦大学发布的针对医疗健康对话式场景而设计的医疗领域大模型与数据集,该模型由DISC-Med-SFT数据集基于Baichuan-13B-Base指令微调得到。

  • Taiyi-LLM
    地址:https://github.com/DUTIR-BioNLP/Taiyi-LLM
    简介:该项目由大连理工大学信息检索研究室开发的中英双语医学大模型"太一",收集整理了丰富的中英双语生物医学自然语言处理(BioNLP)训练语料,总共包含38个中文数据集,通过丰富的中英双语任务指令数据(超过100W条样本)进行大模型(Qwen-7B-base)指令微调,使模型具备了出色的中英双语生物医学智能问答、医患对话、报告生成、信息抽取、机器翻译、标题生成、文本分类等多种BioNLP能力。

  • WiNGPT
    地址:https://github.com/winninghealth/WiNGPT2
    简介:WiNGPT是一个基于GPT的医疗垂直领域大模型,基于Qwen-7b1作为基础预训练模型,在此技术上进行了继续预训练,指令微调等,该项目具体开源了WiNGPT2-7B-Base与WiNGPT2-7B-Chat模型。

  • ChiMed-GPT
    地址:https://github.com/synlp/ChiMed-GPT
    简介:ChiMed-GPT是一个开源中文医学大语言模型,通过在中文医学数据上持续训练 Ziya-v2 构建而成,其中涵盖了预训练、有监督微调 (SFT) 和来自人类反馈的强化学习 (RLHF) 等训练过程。

  • MindChat
    地址:https://github.com/X-D-Lab/MindChat
    简介:心理大模型——漫谈(MindChat)期望从心理咨询、心理评估、心理诊断、心理治疗四个维度帮助人们纾解心理压力与解决心理困惑,为用户提供隐私、温暖、安全、及时、方便的对话环境,从而帮助用户克服各种困难和挑战,实现自我成长和发展。MindChat是一个基于Qwen作为基础预训练模型,并在此基础上进行指令微调得到的心理垂域大模型。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

脑洞笔记

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值