YOLOV8模型训练各类参数设置全面详解
简介
Ultralytics YOLOv8 的训练模式专为高效训练目标检测模型而设计,充分利用现代硬件功能。本文章在涵盖使用 YOLOv8 的强大功能集训练您自己的模型所需的所有细节。
为什么选择 Ultralytics YOLO 进行训练?
以下是选择 YOLOv8 训练模式的一些令人信服的理由:
- 效率:充分利用硬件,支持单 GPU 和多 GPU。
- 多功能性:除了现成的数据集如 COCO、VOC 和 ImageNet,还可以在自定义数据集上进行训练。
- 用户友好:简单而强大的 CLI (命令行)和 Python 接口,提供简便的训练体验。
- 超参数灵活性:广泛的可定制超参数,以微调模型性能。
Ultralytics YOLO训练模型特点
以下是 YOLOv8 训练模式的一些显著特征:
- 自动数据集下载:首次使用时自动下载标准数据集如 COCO、VOC 和 ImageNet。
- 多 GPU 支持:无缝扩展训练,利用多 GPU 加快训练过程。
- 超参数配置:通过 YAML 配置文件或 CLI 参数修改超参数。
- 可视化和监控:实时跟踪训练指标和可视化学习过程以获得更好的洞察。
提示:YOLOv8 数据集如 COCO、VOC、ImageNet 等在首次使用时自动下载,例如 yolo train data=coco.yaml
利用Ultralytics YOLO训练模型的简单使用示例
在 COCO8 数据集上训练 YOLOv8n 100 个 epoch,图像大小为 640。可以使用 device 参数指定训练设备。**如果未传递参数,将使用 GPU device=0(如果可用),否则使用 device=‘cpu’。**有关完整的训练参数列表,请参见下面的 Arguments 部分。
单 GPU 和 CPU 训练示例
设备会自动确定。如果有 GPU 可用,则使用 GPU,否则在 CPU 上开始训练。
from ultralytics import YOLO
# 加载模型(以下三个语句,你只需选择一行即可)
model = YOLO("yolov8n.yaml") # 从 YAML 构建新模型
model = YOLO("yolov8n.pt") # 加载预训练模型(推荐用于训练)
model = YOLO("yolov8n.yaml").load("yolov8n.pt") # 从 YAML 构建并转移权重
# 训练模型
results = model.train(data="coco8.yaml", epochs=100, imgsz=640)
多 GPU 训练
多 GPU 训练通过在多个 GPU 上分配训练负载来更高效地利用可用硬件资源。此功能通过 Python API 和命令行接口均可用。要启用多 GPU 训练,请指定要使用的 GPU 设备 ID。
多 GPU 训练示例
要使用 2 个 GPU 训练,CUDA 设备 0 和 1 使用以下命令。根据需要扩展到其他 GPU。
from ultralytics import YOLO
# 加载模型
model = YOLO("yolov8n.pt") # 加载预训练模型(推荐用于训练)
# 使用 2 个 GPU 训练模型
results = model.train(data="coco8.yaml", epochs=100, imgsz=640, device=[0, 1])
Apple M1 和 M2 MPS 训练
Ultralytics YOLO 模型集成了对 Apple M1 和 M2 芯片的支持,现在可以在使用强大的 Metal Performance Shaders (MPS) 框架的设备上训练模型。MPS 提供了一种高性能的方式在 Apple 定制芯片上执行计算和图像处理任务。
要在 Apple M1 和 M2 芯片上启用训练,应在启动训练过程时指定 ‘mps’ 作为设备。以下是在 Python 和命令行中进行设置的示例:
MPS 训练示例
from ultralytics import YOLO
# 加载模型
model = YOLO("yolov8n.pt") # 加载预训练模型(推荐用于训练)
# 使用 MPS 训练模型
results = model.train(data="coco8.yaml", epochs=100, imgsz=640, device="mps")
利用 M1/M2 芯片的计算能力,这能更高效地处理训练任务。有关更详细的指导和高级配置选项,请参阅 PyTorch MPS 文档。
恢复中断的训练
从以前保存的状态恢复训练是处理深度学习模型时的一个关键功能。这在训练过程意外中断或希望用新数据继续训练模型或增加 epoch 时非常有用。
恢复训练时,Ultralytics YOLO 会加载上次保存的模型权重,并恢复优化器状态、学习率调度器和 epoch 编号。这使您可以无缝地从中断处继续训练过程。
您可以通过在调用 train 方法时将 resume 参数设置为 True,并指定包含部分训练模型权重的 .pt 文件路径,轻松在 Ultralytics YOLO 中恢复训练。
以下是在 Python 和命令行中恢复中断训练的示例:
恢复训练示例
from ultralytics import YOLO
# 加载模型
model = YOLO("path/to/last.pt") # 加载部分训练的模型
# 恢复训练
results = model.train(resume=True)
通过设置 resume=True,train 函数将使用存储在 ‘path/to/last.pt’ 文件中的状态继续训练。如果省略或将 resume 参数设置为 False,train 函数将启动新的训练会话。
请记住,检查点默认在每个 epoch 结束时保存,或使用 save_period 参数以固定间隔保存,因此必须完成至少 1 个 epoch 才能恢复训练。
注意:如果你在训练模型时没特别指定存储位置,那么.pt文件通常在运行训练代码所在目录下的runs目录之内(例如runs\detect\train1\weights\last.pt)。如下图:
训练设置所有参数详解
YOLO 模型的训练设置包括在训练过程中使用的各种超参数和配置。这些设置会影响模型的性能、速度和准确性。关键的训练设置包括批量大小、学习率、动量和权重衰减。此外,优化器的选择、损失函数和训练数据集的组成也会影响训练过程。仔细调整和实验这些设置对于优化性能至关重要。
参数 | 默认值 | 描述 |
---|---|---|
model | None | 指定训练模型文件。接受 .pt 预训练模型或 .yaml 配置文件的路径。对定义模型结构或初始化权重至关重要。 |
data | None | 数据集配置文件的路径(如 coco8.yaml)。该文件包含数据集特定参数,包括训练和验证数据的路径、类别名称和类别数量。注意:该yaml文件中必须至少包含训练集和验证集数据路径。 |
epochs | 100 | 总训练 epochs 数。每个 epoch 代表完整遍历整个数据集一次。调整此值会影响训练时长和模型性能。 |
time | None | 最大训练时间(小时)。如果设置,将覆盖 epochs 参数,允许在指定时间后自动停止训练。适用于时间受限的训练场景。 |
patience | 100 | 在验证指标没有改进的情况下等待的 epochs 数,之后提前停止训练。通过在性能停滞时停止训练来防止过拟合。 |
batch | 16 | 批量大小,有三种模式:设置为整数(如 batch=16),自动模式为 GPU 内存利用率的 60%(batch=-1),或指定利用率分数的自动模式(batch=0.70)。当你不会根据图像大小计算所需内存时,后面两种模式很有用。 |
imgsz | 640 | 训练的目标图像大小。所有图像在输入模型前都将调整为此尺寸。影响模型准确性和计算复杂性。 |
save | True | 启用训练检查点和最终模型权重的保存。对于恢复训练或模型部署非常有用。 |
save_period | -1 | 模型检查点保存频率,以 epochs 为单位。值为 -1 禁用此功能。在长时间训练期间保存中间模型非常有用。 |
cache | False | 启用数据集图像缓存到内存(True/ram)、磁盘(disk)或禁用(False)。通过减少磁盘 I/O 提高训练速度,但增加内存使用。 |
device | None | 指定训练的计算设备:单个 GPU(device=0),多个 GPU(device=0,1),CPU(device=cpu),或 Apple 芯片的 MPS(device=mps)。 |
workers | 8 | 数据加载的工作线程数(如果是多 GPU 训练,则按 RANK 计算)。影响数据预处理和输入模型的速度,尤其在多 GPU 设置中。 |
project | None | 保存训练输出的项目目录名称。允许有组织地存储不同实验。 |
name | None | 训练运行的名称。用于在项目文件夹内创建子目录,保存训练日志和输出。 |
exist_ok | False | 如果为 True,允许覆盖现有的项目/名称目录。适用于无需手动清理先前输出的迭代实验。 |
pretrained | True | 决定是否从预训练模型开始训练。可以是布尔值或字符串路径,指定从哪个模型加载权重。增强训练效率和模型性能。 |
optimizer | ‘auto’ | 训练的优化器选择。选项包括 SGD、Adam、AdamW、NAdam、RAdam、RMSProp 等,或根据模型配置自动选择。影响收敛速度和稳定性。 |
verbose | False | 启用详细输出,在训练期间提供详细日志和进度更新。适用于调试和密切监控训练过程。 |
seed | 0 | 设置训练的随机种子,确保在相同配置下结果的可重复性。 |
deterministic | True | 强制使用确定性算法,确保可重复性,但可能因限制非确定性算法而影响性能和速度。 |
single_cls | False | 在训练期间将多类数据集中的所有类视为单一类。适用于二分类任务或专注于对象存在而非分类时。 |
rect | False | 启用矩形训练,优化批次组成以最小化填充。可以提高效率和速度,但可能影响模型准确性。 |
cos_lr | False | 使用余弦学习率调度器,按余弦曲线调整学习率。帮助更好地管理学习率以实现更好的收敛。 |
close_mosaic | 10 | 在最后 N 个 epochs 中禁用马赛克数据增强,以在完成前稳定训练。设置为 0 禁用此功能。 |
resume | False | 从上次保存的检查点恢复训练。自动加载模型权重、优化器状态和 epoch 计数,继续无缝训练。 |
amp | True | 启用自动混合精度(AMP)训练,减少内存使用并可能加快训练速度,对准确性的影响最小。 |
fraction | 1.0 | 指定用于训练的数据集的比例。允许在数据集的子集中进行训练,适用于实验或资源有限时。 |
profile | False | 启用训练期间 ONNX 和 TensorRT 速度的分析,优化模型部署。 |
freeze | None | 冻结模型的前 N 层或按索引指定的层,减少可训练参数数量。适用于微调或迁移学习。 |
lr0 | 0.01 | 初始学习率(如 SGD=1E-2,Adam=1E-3)。调整此值对优化过程至关重要,影响模型权重的更新速度。 |
lrf | 0.01 | 最终学习率作为初始率的分数 = (lr0 * lrf),与调度器一起使用以随时间调整学习率。 |
momentum | 0.937 | SGD 的动量因子或 Adam 的 beta1,影响当前更新中过去梯度的合并。 |
weight_decay | 0.0005 | L2 正则化项,惩罚大权重以防止过拟合。 |
warmup_epochs | 3.0 | 学习率预热的 epochs 数,从低值逐渐增加到初始学习率,以在早期稳定训练。 |
warmup_momentum | 0.8 | 预热阶段的初始动量,在预热期内逐渐调整到设定动量。 |
warmup_bias_lr | 0.1 | 预热阶段偏置参数的学习率,有助于在初始 epochs 中稳定模型训练。 |
box | 7.5 | 损失函数中 box 损失组件的权重,影响准确预测边界框坐标的重要性。 |
cls | 0.5 | 总损失函数中分类损失的权重,影响正确类别预测相对于其他组件的重要性。 |
dfl | 1.5 | 分布焦点损失的权重,用于某些 YOLO 版本的细粒度分类。 |
pose | 12.0 | 在姿态估计训练的模型中姿态损失的权重,影响准确预测姿态关键点的重要性。 |
kobj | 2.0 | 姿态估计模型中关键点对象性的损失权重,平衡检测置信度与姿态准确性。 |
label_smoothing | 0.0 | 应用标签平滑,将硬标签软化为目标标签和标签间的均匀分布的混合,可以改善泛化。 |
nbs | 64 | 用于损失归一化的名义批大小。 |
overlap_mask | True | 决定在训练期间分割掩码是否应重叠,适用于实例分割任务。 |
mask_ratio | 4 | 分割掩码的下采样率,影响训练期间使用的掩码分辨率。 |
dropout | 0.0 | 分类任务的正则化丢弃率,通过在训练期间随机忽略单元来防止过拟合。 |
val | True | 启用训练期间的验证,允许定期评估模型在单独数据集上的性能。 |
plots | False | 生成并保存训练和验证指标的图表以及预测示例,为模型性能和学习进展提供视觉洞察。 |
批量大小设置说明
批量参数可以通过三种方式配置:
固定批量大小:设置为整数值(如 batch=16),直接指定每批次的图像数量。
自动模式(60% GPU 内存):使用 batch=-1 自动调整批量大小,以大约 60% 的 CUDA 内存利用率。
具有利用率分数的自动模式:设置为分数值(如 batch=0.70)以根据指定的 GPU 内存使用分数调整批量大小。
图像增强设置和超参数
增强技术对于通过引入训练数据的多样性来提高 YOLO 模型的鲁棒性和性能至关重要,帮助模型更好地泛化到未见过的数据。以下表格概述了每个增强参数的用途和效果:
参数 | 类型 | 默认值 | 范围 | 描述 |
---|---|---|---|---|
hsv_h | float | 0.015 | 0.0 - 1.0 | 调整图像的色调,增加颜色变化,有助于模型在不同光照条件下泛化。 |
hsv_s | float | 0.7 | 0.0 - 1.0 | 改变图像的饱和度,影响颜色的强度。用于模拟不同的环境条件。 |
hsv_v | float | 0.4 | 0.0 - 1.0 | 修改图像的亮度,有助于模型在各种光照条件下表现良好。 |
degrees | float | 0.0 | -180 - +180 | 随机旋转图像,提升模型识别不同方向物体的能力。 |
translate | float | 0.1 | 0.0 - 1.0 | 水平和垂直平移图像,帮助模型学会检测部分可见的物体。 |
scale | float | 0.5 | >=0.0 | 按比例缩放图像,模拟不同距离的物体。 |
shear | float | 0.0 | -180 - +180 | 按指定角度剪切图像,模拟从不同角度观看物体的效果。 |
perspective | float | 0.0 | 0.0 - 0.001 | 对图像应用随机透视变换,增强模型理解三维空间中物体的能力。 |
flipud | float | 0.0 | 0.0 - 1.0 | 以指定概率上下翻转图像,增加数据多样性而不影响物体特性。 |
fliplr | float | 0.5 | 0.0 - 1.0 | 以指定概率左右翻转图像,有助于学习对称物体,并增加数据集多样性。 |
bgr | float | 0.0 | 0.0 - 1.0 | 以指定概率将图像通道从 RGB 翻转为 BGR,提高对错误通道顺序的鲁棒性。 |
mosaic | float | 1.0 | 0.0 - 1.0 | 将四张训练图像组合成一张,模拟不同场景构图和物体交互。非常有效的复杂场景理解。 |
mixup | float | 0.0 | 0.0 - 1.0 | 将两张图像及其标签混合,创建复合图像。通过引入标签噪声和视觉变化,提高模型的泛化能力。 |
copy_paste | float | 0.0 | 0.0 - 1.0 | 将一个图像中的物体复制并粘贴到另一个图像中,有助于增加物体实例并学习物体遮挡。 |
auto_augment | str | randaugment | - | 自动应用预定义的增强策略(randaugment、autoaugment、augmix),通过多样化视觉特征优化分类任务。 |
erasing | float | 0.4 | 0.0 - 0.9 | 在分类训练期间随机擦除图像的一部分,鼓励模型关注较不明显的特征。 |
crop_fraction | float | 1.0 | 0.1 - 1.0 | 将分类图像裁剪为其大小的一部分,以强调中心特征并适应物体尺度,减少背景干扰。 |
这些设置可以根据数据集和任务的具体需求进行调整。通过不同值的实验,可以找到最佳的增强策略,从而达到最佳的模型性能。