正态随机变量的特征函数

fd920b2d44c145c4aa622ad99debd799.jpg

 

### 二维分布的特征函数 #### 定义 对于二维随机变量 \((X, Y)\),假设 \(X\) 和 \(Y\) 都服从分布,则可以定义它们的联合概率密度函数。设均值向量为 \(\mu = (\mu_X, \mu_Y)^T\),协方差矩阵为: \[ \Sigma = \begin{pmatrix} \sigma_{XX} & \sigma_{XY}\\ \sigma_{XY} & \sigma_{YY} \end{pmatrix} \] 那么,二维分布的特征函数可表示为: \[ \phi(t_1,t_2)=E[e^{i(t_1 X+t_2 Y)}]=e^{it_1\mu_X+it_2\mu_Y-\frac{1}{2}(t_1^2\sigma_{XX}+2t_1 t_2\sigma_{XY}+t_2^2\sigma_{YY})}[^1] \] 这里 \(t_1\) 和 \(t_2\) 是两个实参数。 #### 性质 - **唯一性**:给定一个特定的概率分布,存在唯一的特征函数与之对应;反之亦然。 - **连续性**:如果随机变量具有有限二阶矩,则其对应的特征函数在其整个定义域上都是连续的。 - **周期性**:当考虑离散型随机变量时,相应的特征函数会表现出一定的周期特性。 - 对于多维情况下的线性变换保持不变性质,在此不再赘述具体细节[^3]。 #### 公式推导 要得到上述公式,可以从标准的一元分布出发逐步扩展到更高维度的情况。首先回顾一元情形下分布的特征函数表达式: \[ \varphi_Z(u) = e^{-iu\mu+\frac{\sigma ^2 u^2 }{2}} \] 接着利用指数函数以及傅里叶变换理论来处理多个相互关联的一元分量组成的矢量形式\(Z=(X,Y)^T\)。通过引入复数单位\(i=\sqrt{-1}\), 并应用泰勒级数展开方法计算期望值操作后的结果即获得最终版本的二维分布特征函数公式[^2]。 ```python import numpy as np def characteristic_function(mu_x, mu_y, sigma_xx, sigma_xy, sigma_yy, t1, t2): term1 = 1j * (t1 * mu_x + t2 * mu_y) term2 = -(0.5)*(t1**2*sigma_xx + 2*t1*t2*sigma_xy + t2**2*sigma_yy) return np.exp(term1 + term2) # Example usage with some parameters print(characteristic_function(0, 0, 1, 0.5, 1, 1, 1)) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

数学分溪

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值