随机变量的特征函数及应用


前言

本文将对常见随机变量如泊松分布、正态分布、二项分布、均匀分布、柯西分布等分布的特征函数的定义、求解,特征函数和随机变量各阶矩之间的关系及其应用作以介绍,通过特征函数求解部分随机变量的均值和方差将变得较为简便。


1 特征函数定义

对于随机变量 X {X} X ,若其分布函数为 F X ( x ) {F_X(x)} FX(x),则其特征函数定义为:

φ ( t ) = φ X ( t ) = E e j t X = ∫ − ∞ ∞ e j t x d F X ( x ) { \varphi(t) = \varphi_X(t) = Ee^{jtX} = \int_{-\infty}^{\infty}{e^{jtx}} {\rm{d}}F_X(x)} φ(t)=φX(t)=EejtX=ejtxdFX(x)

其中, E {E} E 代表数学期望, t {t} t 为实数, j {j} j 为虚数单位,显然特征函数为 t {t} t 的复值函数。且由于:

∣ φ ( t ) ∣ = ∣ ∫ − ∞ ∞ e j t x d F X ( x ) ∣ ≤ ∫ − ∞ ∞ ∣ e j t x ∣ d F X ( x ) = 1 { \left| {\varphi(t)} \right| = \left| {\int_{-\infty}^{\infty}{e^{jtx}} {\rm{d}} F_X(x)} \right| \leq {\int_{-\infty}^{\infty} \left|{e^{jtx}}\right| {\rm{d}}F_X(x)} = 1 } φ(t)=ejtxdFX(x)ejtxdFX(x)=1

因此随机变量的特征函数总是存在的;且如果两个随机变量具有相同的特征函数,那么它们具有相同的概率分布,反之如果两个随机变量具有相同的概率分布,它们的特征函数也相同。

如果随机变量为连续性随机变量,且其概率密度函数为 f ( x ) {f(x)} f(x) ,则特征函数可表示为:

φ ( t ) = ∫ − ∞ ∞ e j t x f ( x ) d x { \varphi(t) = \int_{-\infty}^{\infty}{e^{jtx}}f(x) {\rm{d}} x } φ(t)=ejtxf(x)dx

如果随机变量为离散型随机变量,且其分布列为 p ( x i ) {p(x_i)} p(xi) ,则特征函数可表示为:

φ ( t ) = ∑ i = 1 ∞ e j t x p ( x i ) { \varphi(t) = \sum_{i=1}^{\infty} e^{jtx} p({x_i})} φ(t)=i=1ejtxp(xi)

2 特征函数常用性质

特征函数常用性质如下:

(1) φ ( 0 ) = 1 , φ ( t ) ≤ φ ( 0 ) , φ ( − t ) = φ ˉ ( t ) \varphi(0) = 1 , \varphi(t) \leq \varphi(0) , \varphi(-t) = \bar{\varphi}(t) φ(0)=1,φ(t)φ(0),φ(t)=φˉ(t)

(2) 若 Y = a X + b Y=aX+b Y=aX+b ,则:

φ Y ( t ) = e j b t φ X ( a t ) { \varphi_Y(t) = e^{jbt} \varphi_X(at)} φY(t)=ejbtφX(at)

(3) 若 X X X Y Y Y 相互独立,且 Z = X + Y Z=X+Y Z=X+Y ,则:

φ Z ( t ) = φ X ( t ) φ Y ( t ) { \varphi_Z(t) = \varphi_X(t) \varphi_Y(t)} φZ(t)=φX(t)φY(t)

(4) 若随机变量 X X X 具有 n n n 阶矩,则其特征函数 n n n 阶可导,且当 0 ≤ k ≤ n 0 \leq k \leq n 0kn 时,有:

φ ( k ) ( 0 ) = j k E X k { \varphi^{(k)}(0) = j^{k}EX^{k} } φ(k)(0)=jkEXk

此条性质可用于求解随机变量的各阶矩(若存在),有时可以避免进行复杂的无穷积分。

3 常见分布特征函数求解

常见分布的特征函数总结如下:

 分布   特征函数   两点分布  p e j t + q  二项分布  ( p e j t + q ) n  泊松分布  e λ ( e j t − 1 )  正态分布  e j μ t − σ 2 t 2 2  几何分布  p e j t 1 − q e j t  均匀分布  e j t b − e j t a j t ( b − a )  柯西分布  e j t a − ∣ λ t ∣  指数分布  λ ( λ − j t )  伽马分布  ( λ λ − j t ) r  拉普拉斯分布  e j μ t 1 + λ 2 t 2 \begin{array}{|c|c|} \hline \text { 分布 } & \text { 特征函数 } \\ \hline \text { 两点分布 } & p e^{j t}+q \\ \hline \text { 二项分布 } & \left(p e^{j t}+q\right)^{n} \\ \hline \text { 泊松分布 } & e^{\lambda\left(e^{j t}-1\right)} \\ \hline \text { 正态分布 } & e^{j \mu t-\frac{\sigma^{2} t^{2}}{2}} \\ \hline \text { 几何分布 } & \frac{p e^{j t}}{1-q e^{j t}} \\ \hline \text { 均匀分布 } & \frac{e^{j t b}-e^{j t a}}{j t(b-a)} \\ \hline \text { 柯西分布 } & e^{j t a- \mid\lambda t \mid} \\ \hline \text { 指数分布 } & \frac{\lambda}{(\lambda-j t)} \\ \hline \text { 伽马分布 } & \left(\frac{\lambda}{\lambda-j t}\right)^{r} \\ \hline \text { 拉普拉斯分布 } & \frac{e^{j \mu t}}{1+\lambda^{2} t^{2}} \\ \hline \end{array} \\  分布  两点分布  二项分布  泊松分布  正态分布  几何分布  均匀分布  柯西分布  指数分布  伽马分布  拉普拉斯分布  特征函数 pejt+q(pejt+q)neλ(ejt1)ejμt2σ2t21qejtpejtjt(ba)ejtbejtaejtaλt(λjt)λ(λjtλ)r1+λ2t2ejμt

3.1 两点分布

两点分布的分布律为:

P ( X = 1 ) = p ( 0 < p < 1 ) , P ( X = 0 ) = q { P(X=1) = p(0<p<1) , P(X=0) = q } P(X=1)=p(0<p<1),P(X=0)=q

根据特征函数定义,其特征函数求解如下:

φ ( t ) = e j t ⋅ 1 p + e j t ⋅ 0 q = p e j t + q { \varphi(t) = e^{jt\cdot1}p + e^{jt\cdot0}q = pe^{jt} + q } φ(t)=ejt1p+ejt0q=pejt+q

3.2 二项分布

二项分布的分布律为:

P ( X = k ) = C n k p k q n − k ( 0 < p < 1 ; k = 0 , 1 , . . . , n ) { P(X=k) = C_{n}^{k} p^{k} q^{n-k} (0<p<1;k=0,1,...,n)} P(X=k)=Cnkpkqnk(0<p<1;k=0,1,...,n)

根据特征函数定义,其特征函数求解如下:

φ ( t ) = ∑ k = 0 ∞ e j t k C n k p k q n − k = ∑ k = 0 ∞ C n k ( p e j t ) k q n − k = ( p e j t + q ) n { \varphi(t) = \sum_{k=0}^{\infty} e^{jtk} C_{n}^{k} p^{k} q^{n-k} = \sum_{k=0}^{\infty} C_{n}^{k} {(pe^{jt})}^{k} q^{n-k} = {(pe^{jt} + q)}^{n} } φ(t)=k=0ejtkCnkpkqnk=k=0Cnk(pejt)kqnk=(pejt+q)n

3.3 泊松分布

泊松分布的分布律为:

P ( X = k ) = λ k k ! e − λ ( λ > 0 ; k = 0 , 1 , 2 , . . . ) { P(X=k) =\frac{\lambda^{k}}{{k!}} e^{-\lambda}(\lambda>0;k=0,1,2,...) } P(X=k)=k!λkeλ(λ>0;k=0,1,2,...)

根据特征函数定义,其特征函数求解如下:

φ ( t ) = ∑ k = 0 ∞ e j t k λ k k ! e − λ = ∑ k = 0 ∞ ( λ e j t ) k k ! e − λ = e λ ( e j t − 1 ) {\varphi(t)=\sum_{k=0}^{\infty} e^{j t k} \frac{\lambda^{k}}{k !} e^{-\lambda}=\sum_{k=0}^{\infty} \frac{\left(\lambda e^{j t}\right)^{k}}{k !} e^{-\lambda}=e^{\lambda\left(e^{j t}-1\right)} } φ(t)=k=0ejtkk!λkeλ=k=0k!(λejt)keλ=eλ(ejt1)

3.4 正态分布

正态分布的概率密度函数为:

f ( x ) = 1 2 π σ e − ( x − μ ) 2 2 , σ > 0 {f(x)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{(x-\mu)^{2}}{2}}, \sigma>0 } f(x)=2π σ1e2(xμ)2,σ>0

下面首先计算标准正态分布的特征函数,根据特征函数定义,标准正态分布的特征函数为:

φ ( t ) = ∫ − ∞ ∞ e j t x 1 2 π e − x 2 2   d x = ∫ − ∞ ∞ 1 2 π e − ( x − j t ) 2 2 − t 2 2   d x = e − t 2 2 ∫ − ∞ ∞ 1 2 π e − ( x − j t ) 2 2   d x = e − t 2 2 {\begin{aligned} \varphi(t) &=\int_{-\infty}^{\infty} e^{j t x} \frac{1}{\sqrt{2 \pi}} e^{-\frac{x^{2}}{2}} \mathrm{~d} x=\int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi}} e^{-\frac{(x-j t)^{2}}{2}-\frac{t^{2}}{2}} \mathrm{~d} x \\ &=e^{-\frac{t^{2}}{2}} \int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi}} e^{-\frac{(x-j t)^{2}}{2}} \mathrm{~d} x=e^{-\frac{t^{2}}{2}} \end{aligned} } φ(t)=ejtx2π 1e2x2 dx=2π 1e2(xjt)22t2 dx=e2t22π 1e2(xjt)2 dx=e2t2

其中 1 2 π e − ( x − j t ) 2 2 \frac{1}{\sqrt{2 \pi}} e^{-\frac{(x-j t)^{2}}{2}} 2π 1e2(xjt)2 可以看作一服从均值为 j t jt jt ,标准差为 1 1 1 的正态分布的概率密度函数,因此 ∫ − ∞ ∞ 1 2 π e − ( x − j t ) 2 2   d x = 1 \int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi}} e^{-\frac{(x-j t)^{2}}{2}} \mathrm{~d} x=1 2π 1e2(xjt)2 dx=1

对于一般的正态分布,可通过变量替换与标准正态分布联系起来,即:

X ∼ N ( μ , σ 2 ) ⟶ Y = X − μ σ Y ∼ N ( 0 , 1 ) {X \sim N\left(\mu, \sigma^{2}\right) \stackrel{Y=\frac{X-\mu}{\sigma}}{\longrightarrow} Y \sim N(0,1) } XN(μ,σ2)Y=σXμYN(0,1)

那么,由性质(2)可得正态分布的特征函数为:

φ ( t ) = φ X ( t ) = e j μ t φ Y ( σ t ) = e j μ t − σ 2 t 2 2 {\varphi(t)=\varphi_{X}(t)=e^{j \mu t} \varphi_{Y}(\sigma t)=e^{j \mu t-\frac{\sigma^{2} t^{2}}{2}}} φ(t)=φX(t)=ejμtφY(σt)=ejμt2σ2t2

3.5 几何分布

几何分布的分布律为:

P ( X = k ) = p q k − 1 ( 0 < p < 1 ; k = 1 , 2 , … ) {P(X=k)=p q^{k-1}(0<p<1 ; k=1,2, \ldots)} P(X=k)=pqk1(0<p<1;k=1,2,)

根据特征函数定义,其特征函数求解如下:

φ ( t ) = ∑ k = 1 ∞ e j t k p q k − 1 = p q ∑ k = 1 ∞ ( q e j t ) k = p q q e j t 1 − q e j t = p e j t 1 − q e j t {\varphi(t)=\sum_{k=1}^{\infty} e^{j t k} p q^{k-1}=\frac{p}{q} \sum_{k=1}^{\infty}\left(q e^{j t}\right)^{k}=\frac{p}{q} \frac{q e^{j t}}{1-q e^{j t}}=\frac{p e^{j t}}{1-q e^{j t}}} φ(t)=k=1ejtkpqk1=qpk=1(qejt)k=qp1qejtqejt=1qejtpejt

3.6 均匀分布

均匀分布的概率密度函数为:

f ( x ) = { 1 b − a a ≤ x ≤ b 0 x < a  或  x > b {f(x)=\left\{\begin{array}{ll} \frac{1}{b-a} & a \leq x \leq b \\ 0 & x<a \text { 或 } x>b \end{array}\right.} f(x)={ba10axbx<a  x>b

根据特征函数定义,其特征函数求解如下:

φ ( t ) = ∫ a b e j t x 1 b − a   d x = 1 b − a e j t x j t ∣ a b = e j t b − e j t a j t ( b − a ) {\varphi(t)=\int_{a}^{b} e^{j t x} \frac{1}{b-a} \mathrm{~d} x=\left.\frac{1}{b-a} \frac{e^{j t x}}{j t}\right|_{a} ^{b}=\frac{e^{j t b}-e^{j t a}}{j t(b-a)}} φ(t)=abejtxba1 dx=ba1jtejtxab=jt(ba)ejtbejta

3.7 柯西分布

柯西分布的概率密度函数为:

f ( x ) = 1 π λ ( x − a ) 2 + λ 2 , λ > 0 {f(x)=\frac{1}{\pi} \frac{\lambda}{(x-a)^{2}+\lambda^{2}}, \lambda>0} f(x)=π1(xa)2+λ2λ,λ>0

根据特征函数定义,其特征函数求解如下:

φ ( t ) = ∫ − ∞ ∞ e j t x 1 π λ ( x − a ) 2 + λ 2   d x = u = x − a λ ∫ − ∞ ∞ e j t ( λ u + a ) 1 π 1 u 2 + 1   d u = e j t a π ∫ − ∞ ∞ e j λ t u 1 u 2 + 1   d u = { e j t a π 2 π j lim ⁡ u → j [ ( u − j ) e j λ t u 1 u 2 + 1 ] ∣ u = j = e j t a − λ t λ t > 0 e j t a π 2 π j lim ⁡ m → j [ ( m − j ) e j ( − λ t ) m 1 m 2 + 1 ] ∣ m = j = e j t a + λ t λ t < 0 , m = − u = e j t a − ∣ λ t ∣ {\begin{aligned} \varphi(t) &=\int_{-\infty}^{\infty} e^{j t x} \frac{1}{\pi} \frac{\lambda}{(x-a)^{2}+\lambda^{2}} \mathrm{~d} x \stackrel{u=\frac{x-a}{\lambda}} {=}\int_{-\infty}^{\infty} e^{j t(\lambda u+a)} \frac{1}{\pi} \frac{1}{u^{2}+1} \mathrm{~d} u \\ &=\frac{e^{j t a}}{\pi} \int_{-\infty}^{\infty} e^{j \lambda t u} \frac{1}{u^{2}+1} \mathrm{~d} u \\ &=\left\{\begin{array}{ll} \left.\frac{e^{j t a}}{\pi} 2 \pi j \lim _{u \rightarrow j}\left[(u-j) e^{j \lambda t u} \frac{1}{u^{2}+1}\right]\right|_{u=j}=e^{j t a-\lambda t} \quad \lambda t>0 \\ \left.\frac{e^{j t a}}{\pi} 2 \pi j \lim _{m \rightarrow j}\left[(m-j) e^{j(-\lambda t) m} \frac{1}{m^{2}+1}\right]\right|_{m=j}=e^{j t a+\lambda t} & \lambda t<0, m=-u \end{array}\right. \\ &=e^{j t a-|\lambda t|} \end{aligned} } φ(t)=ejtxπ1(xa)2+λ2λ dx=u=λxaejt(λu+a)π1u2+11 du=πejtaejλtuu2+11 du=πejta2πjlimuj[(uj)ejλtuu2+11]u=j=ejtaλtλt>0πejta2πjlimmj[(mj)ej(λt)mm2+11]m=j=ejta+λtλt<0,m=u=ejtaλt

3.8 指数分布

指数分布的概率密度函数为:

f ( x ) = { λ e − λ x x > 0 0 x ≤ 0 , λ > 0 {f(x)=\left\{\begin{array}{ll} \lambda e^{-\lambda x} & x>0 \\ 0 & x \leq 0 \end{array}, \lambda>0\right.} f(x)={λeλx0x>0x0,λ>0

根据特征函数定义,其特征函数求解如下:

φ ( t ) = ∫ 0 ∞ e j t x λ e − λ x   d x = λ e ( j t − λ ) x ( j t − λ ) ∣ 0 ∞ = λ ( λ − j t ) {\varphi(t)=\int_{0}^{\infty} e^{j t x} \lambda e^{-\lambda x} \mathrm{~d} x=\left.\lambda \frac{e^{(j t-\lambda) x}}{(j t-\lambda)}\right|_{0} ^{\infty}=\frac{\lambda}{(\lambda-j t)}} φ(t)=0ejtxλeλx dx=λ(jtλ)e(jtλ)x0=(λjt)λ

3.9 伽马分布

伽马分布的概率密度函数为:

f ( x ) = { λ r Γ ( r ) x r − 1 e − λ x x > 0 0 x ≤ 0 , λ > 0 ; r > 0 {f(x)=\left\{\begin{array}{ll} \frac{\lambda^{r}}{\Gamma(r)} x^{r-1} e^{-\lambda x} & x>0 \\ 0 & x \leq 0 \end{array}, \lambda>0 ; r>0\right.} f(x)={Γ(r)λrxr1eλx0x>0x0,λ>0;r>0

根据特征函数定义,其特征函数求解如下:

φ ( t ) = ∫ 0 ∞ e j t x λ r Γ ( r ) x r − 1 e − λ x   d x = λ r Γ ( r ) ∫ 0 ∞ x r − 1 e ( j t − λ ) x   d x = u = ( λ − j t ) x λ r Γ ( r ) ∫ 0 ∞ 1 ( λ − j t ) r u r − 1 e − u   d u = λ r Γ ( r ) Γ ( r ) ( λ − j t ) r = ( λ λ − j t ) r {\begin{aligned} \varphi(t) &=\int_{0}^{\infty} e^{j t x} \frac{\lambda^{r}}{\Gamma(r)} x^{r-1} e^{-\lambda x} \mathrm{~d} x \\ &=\frac{\lambda^{r}}{\Gamma(r)} \int_{0}^{\infty} x^{r-1} e^{(j t-\lambda) x} \mathrm{~d} x \stackrel{u=(\lambda-j t) x} {=} \frac{\lambda^{r}}{\Gamma(r)} \int_{0}^{\infty} \frac{1}{(\lambda-j t)^{r}} u^{r-1} e^{-u} \mathrm{~d} u \\ &=\frac{\lambda^{r}}{\Gamma(r)} \frac{\Gamma(r)}{(\lambda-j t)^{r}}=\left(\frac{\lambda}{\lambda-j t}\right)^{r} \end{aligned}} φ(t)=0ejtxΓ(r)λrxr1eλx dx=Γ(r)λr0xr1e(jtλ)x dx=u=(λjt)xΓ(r)λr0(λjt)r1ur1eu du=Γ(r)λr(λjt)rΓ(r)=(λjtλ)r

3.10 拉普拉斯分布

拉普拉斯分布的概率密度函数为:

f ( x ) = 1 2 λ e − ∣ x − μ ∣ λ , λ > 0 {f(x)=\frac{1}{2 \lambda} e^{-\frac{|x-\mu|}{\lambda}}, \lambda>0} f(x)=2λ1eλxμ,λ>0

根据特征函数定义,其特征函数求解如下:

φ ( t ) = ∫ − ∞ ∞ e j t x 1 2 λ e − ∣ x − μ ∣ λ d x = 1 2 λ ( ∫ − ∞ μ e j t x 1 2 λ e x − μ λ d x + ∫ μ ∞ e j t x 1 2 λ e − x − μ λ d x ) = 1 2 λ ( e − μ λ λ j λ t + 1 e 1 + j λ t λ x ∣ − ∞ μ + e μ λ λ j λ t − 1 e j λ t − 1 λ x ∣ μ ∞ ) = e j μ t 1 + λ 2 t 2 {\begin{aligned} \varphi(t) &=\int_{-\infty}^{\infty} e^{j t x} \frac{1}{2 \lambda} e^{-\frac{|x-\mu|}{\lambda}} \mathrm{d} x \\ &=\frac{1}{2 \lambda}\left(\int_{-\infty}^{\mu} e^{j t x} \frac{1}{2 \lambda} e^{\frac{x-\mu}{\lambda}} \mathrm{d} x+\int_{\mu}^{\infty} e^{j t x} \frac{1}{2 \lambda} e^{-\frac{x-\mu}{\lambda}} \mathrm{d} x\right) \\ &=\frac{1}{2 \lambda}\left(\left.e^{-\frac{\mu}{\lambda}} \frac{\lambda}{j \lambda t+1} e^{\frac{1+j \lambda t}{\lambda} x}\right|_{{-\infty}}^{\mu}+\left.e^{\frac{\mu}{\lambda}} \frac{\lambda}{j \lambda t-1} e^{\frac{j \lambda t-1}{\lambda} x}\right|_{\mu} ^{\infty}\right) \\ &=\frac{e^{j \mu t}}{1+\lambda^{2} t^{2}} \end{aligned}} φ(t)=ejtx2λ1eλxμdx=2λ1(μejtx2λ1eλxμdx+μejtx2λ1eλxμdx)=2λ1(eλμjλt+1λeλ1+jλtxμ+eλμjλt1λeλjλt1xμ)=1+λ2t2ejμt

4 随机变量均值和方差求解

常见随机变量的均值方差如下:

 分布   均值   方差   两点分布  p p q  二项分布  n p n p q  泊松分布  λ λ  正态分布  μ σ 2  几何分布  1 p q p 2  均匀分布  a + b 2 ( a − b ) 2 12  柯西分布  − −  指数分布  1 λ 1 λ 2  伽马分布  r λ r λ 2  拉普拉斯分布  μ 2 λ 2 \begin{array}{|c|c|c|} \hline \text { 分布 } & \text { 均值 } & \text { 方差 } \\ \hline \text { 两点分布 } & p & p q \\ \hline \text { 二项分布 } & n p & n p q \\ \hline \text { 泊松分布 } & \lambda & \lambda \\ \hline \text { 正态分布 } & \mu & \sigma^{2} \\ \hline \text { 几何分布 } & \frac{1}{p} & \frac{q}{p^{2}} \\ \hline \text { 均匀分布 } & \frac{a+b}{2} & \frac{(a-b)^{2}}{12} \\ \hline \text { 柯西分布 } & - & - \\ \hline \text { 指数分布 } & \frac{1}{\lambda} & \frac{1}{\lambda^{2}} \\ \hline \text { 伽马分布 } & \frac{r}{\lambda} & \frac{r}{\lambda^{2}} \\ \hline \text { 拉普拉斯分布 } & \mu & 2 \lambda^{2} \\ \hline \end{array} \\  分布  两点分布  二项分布  泊松分布  正态分布  几何分布  均匀分布  柯西分布  指数分布  伽马分布  拉普拉斯分布  均值 pnpλμp12a+bλ1λrμ 方差 pqnpqλσ2p2q12(ab)2λ21λ2r2λ2

由性质(4)知:

E X k = φ ( k ) ( 0 ) j k {E X^{k}=\frac{\varphi^{(k)}(0)}{j^{k}}} EXk=jkφ(k)(0)

因此,随机变量均值和方差可求解如下:

E X = φ ′ ( 0 ) j = − j φ ′ ( 0 ) D X = E X 2 − ( E X ) 2 = − φ ′ ′ ( 0 ) + ( φ ′ ( 0 ) ) 2 { \begin{aligned} &E X=\frac{\varphi^{\prime}(0)}{j}=-j \varphi^{\prime}(0) \\ &D X=E X^{2}-(E X)^{2}=-\varphi^{\prime \prime}(0)+\left(\varphi^{\prime}(0)\right)^{2} \end{aligned}} EX=jφ(0)=jφ(0)DX=EX2(EX)2=φ(0)+(φ(0))2

4.1 两点分布的均值和方差

两点分布的特征函数为:

φ ( t ) = p e j t + q { \varphi(t) = pe^{jt} + q} φ(t)=pejt+q

则:

φ ′ ( 0 ) = j p φ ′ ′ ( 0 ) = − p { \begin{aligned} &\varphi^{\prime}(0)=j p \\ &\varphi^{\prime \prime}(0)=-p \end{aligned}} φ(0)=jpφ(0)=p

因此,其均值和方差为:

E X = − j φ ′ ( 0 ) = − j ⋅ j p = p D X = − φ ′ ′ ( 0 ) + ( φ ′ ( 0 ) ) 2 = p + ( j p ) 2 = p q (4.6) \Large { \begin{aligned} &E X=-j \varphi^{\prime}(0)=-j \cdot j p=p \\ &D X=-\varphi^{\prime \prime}(0)+\left(\varphi^{\prime}(0)\right)^{2}=p+(j p)^{2}=p q \end{aligned}\Large{\tag{4.6}} } EX=jφ(0)=jjp=pDX=φ(0)+(φ(0))2=p+(jp)2=pq(4.6)

4.2 二项分布的均值和方差

二项分布的特征函数为:

φ ( t ) = ( p e j t + q ) n { \varphi(t) = {(pe^{jt} + q)}^{n}} φ(t)=(pejt+q)n

则:

φ ′ ( 0 ) = j n p φ ′ ′ ( 0 ) = − n ( n − 1 ) p 2 − n p { \begin{aligned} &\varphi^{\prime}(0)=j n p \\ &\varphi^{\prime \prime}(0)=-n(n-1) p^{2}-n p \end{aligned} } φ(0)=jnpφ(0)=n(n1)p2np

因此,其均值和方差为:

E X = − j φ ′ ( 0 ) = − j ⋅ j n p = n p D X = − φ ′ ′ ( 0 ) + ( φ ′ ( 0 ) ) 2 = n ( n − 1 ) p 2 + n p + ( j n p ) 2 = n p q { \begin{aligned} &E X=-j \varphi^{\prime}(0)=-j \cdot j n p=n p \\ &D X=-\varphi^{\prime \prime}(0)+\left(\varphi^{\prime}(0)\right)^{2}=n(n-1) p^{2}+n p+(j n p)^{2}=n p q \end{aligned}} EX=jφ(0)=jjnp=npDX=φ(0)+(φ(0))2=n(n1)p2+np+(jnp)2=npq

4.3 泊松分布的均值和方差

泊松分布的特征函数为:

φ ( t ) = e λ ( e j t − 1 ) {\varphi(t)=e^{\lambda\left(e^{j t}-1\right)}} φ(t)=eλ(ejt1)

则:

φ ′ ( 0 ) = j λ φ ′ ′ ( 0 ) = − λ ( λ + 1 ) {\begin{aligned} &\varphi^{\prime}(0)=j \lambda \\ &\varphi^{\prime \prime}(0)=-\lambda(\lambda+1) \end{aligned}} φ(0)=jλφ(0)=λ(λ+1)

因此,其均值和方差为:

E X = − j φ ′ ( 0 ) = − j ⋅ j λ = λ D X = − φ ′ ′ ( 0 ) + ( φ ′ ( 0 ) ) 2 = λ ( λ + 1 ) + ( j λ ) 2 = λ {\begin{aligned} &E X=-j \varphi^{\prime}(0)=-j \cdot j \lambda=\lambda \\ &D X=-\varphi^{\prime \prime}(0)+\left(\varphi^{\prime}(0)\right)^{2}=\lambda(\lambda+1)+(j \lambda)^{2}=\lambda \end{aligned} } EX=jφ(0)=jjλ=λDX=φ(0)+(φ(0))2=λ(λ+1)+(jλ)2=λ

4.4 正态分布的均值和方差

正态分布的特征函数为:

φ ( t ) = e j μ t − σ 2 t 2 2 {\varphi(t)=e^{j \mu t-\frac{\sigma^{2} t^{2}}{2}}} φ(t)=ejμt2σ2t2

则:

φ ′ ( 0 ) = j μ φ ′ ′ ( 0 ) = − ( σ 2 + μ 2 ) {\begin{aligned} &\varphi^{\prime}(0)=j \mu \\ &\varphi^{\prime \prime}(0)=-\left(\sigma^{2}+\mu^{2}\right) \end{aligned}} φ(0)=jμφ(0)=(σ2+μ2)

因此,其均值和方差为:

E X = − j φ ′ ( 0 ) = − j ⋅ j μ = μ D X = − φ ′ ′ ( 0 ) + ( φ ′ ( 0 ) ) 2 = ( σ 2 + μ 2 ) + ( j μ ) 2 = σ 2 {\begin{aligned} &E X=-j \varphi^{\prime}(0)=-j \cdot j \mu=\mu \\ &D X=-\varphi^{\prime \prime}(0)+\left(\varphi^{\prime}(0)\right)^{2}=\left(\sigma^{2}+\mu^{2}\right)+(j \mu)^{2}=\sigma^{2} \end{aligned}} EX=jφ(0)=jjμ=μDX=φ(0)+(φ(0))2=(σ2+μ2)+(jμ)2=σ2

4.5 几何分布的均值和方差

几何分布的特征函数为:

φ ( t ) = p e j t 1 − q e j t {\varphi(t)=\frac{p e^{j t}}{1-q e^{j t}}} φ(t)=1qejtpejt

则:

φ ′ ( 0 ) = j 1 p φ ′ ′ ( 0 ) = − p + 2 q p 2 {\begin{aligned} &\varphi^{\prime}(0)=j \frac{1}{p} \\ &\varphi^{\prime \prime}(0)=-\frac{p+2 q}{p^{2}} \end{aligned}} φ(0)=jp1φ(0)=p2p+2q

因此,其均值和方差为:

E X = − j φ ′ ( 0 ) = − j ⋅ j 1 p = 1 p D X = − φ ′ ′ ( 0 ) + ( φ ′ ( 0 ) ) 2 = p + 2 q p 2 + ( j 1 p ) 2 = q p 2 {\begin{aligned} &E X=-j \varphi^{\prime}(0)=-j \cdot j \frac{1}{p}=\frac{1}{p} \\ &D X=-\varphi^{\prime \prime}(0)+\left(\varphi^{\prime}(0)\right)^{2}=\frac{p+2 q}{p^{2}}+\left(j \frac{1}{p}\right)^{2}=\frac{q}{p^{2}} \end{aligned}} EX=jφ(0)=jjp1=p1DX=φ(0)+(φ(0))2=p2p+2q+(jp1)2=p2q

4.6 均匀分布的均值和方差

均匀分布的特征函数为:

φ ( t ) = e j t b − e j t a j t ( b − a ) {\varphi(t)=\frac{e^{j t b}-e^{j t a}}{j t(b-a)}} φ(t)=jt(ba)ejtbejta

则:

φ ′ ( 0 ) = j a + b 2 φ ′ ′ ( 0 ) = − a 2 + a b + b 2 3 {\begin{aligned} \varphi^{\prime}(0) &=j \frac{a+b}{2} \\ \varphi^{\prime \prime}(0) &=-\frac{a^{2}+a b+b^{2}}{3} \end{aligned} } φ(0)φ(0)=j2a+b=3a2+ab+b2

因此,其均值和方差为:

E X = − j φ ′ ( 0 ) = − j ⋅ j a + b 2 = a + b 2 D X = − φ ′ ′ ( 0 ) + ( φ ′ ( 0 ) ) 2 = a 2 + a b + b 2 3 + ( j a + b 2 ) 2 = ( a − b ) 2 12 {\begin{aligned} &E X=-j \varphi^{\prime}(0)=-j \cdot j \frac{a+b}{2}=\frac{a+b}{2} \\ &D X=-\varphi^{\prime \prime}(0)+\left(\varphi^{\prime}(0)\right)^{2}=\frac{a^{2}+a b+b^{2}}{3}+\left(j \frac{a+b}{2}\right)^{2}=\frac{(a-b)^{2}}{12} \end{aligned}} EX=jφ(0)=jj2a+b=2a+bDX=φ(0)+(φ(0))2=3a2+ab+b2+(j2a+b)2=12(ab)2

4.7 柯西分布的均值和方差

柯西分布的特征函数为:

φ ( t ) = e j t a − ∣ λ t ∣ {\begin{aligned} \varphi(t) &=e^{j t a-|\lambda t|} \end{aligned}} φ(t)=ejtaλt

φ ′ ( 0 ) \varphi^{\prime}(0) φ(0) φ ′ ′ ( 0 ) \varphi^{\prime \prime}(0) φ(0) 均不存在,因此,其均值和方差均不存在。

4.8 指数分布的均值和方差

指数分布的特征函数为:

φ ( t ) = λ ( λ − j t ) {\varphi(t)=\frac{\lambda}{(\lambda-j t)}} φ(t)=(λjt)λ

则:

φ ′ ( 0 ) = j 1 λ φ ′ ′ ( 0 ) = − 2 λ 2 {\begin{aligned} \varphi^{\prime}(0) &=j \frac{1}{\lambda} \\ \varphi^{\prime \prime}(0) &=-\frac{2}{\lambda^{2}} \end{aligned}} φ(0)φ(0)=jλ1=λ22

因此,其均值和方差为:

E X = − j φ ′ ( 0 ) = − j ⋅ j 1 λ = 1 λ D X = − φ ′ ′ ( 0 ) + ( φ ′ ( 0 ) ) 2 = 2 λ 2 + ( j 1 λ ) 2 = 1 λ 2 {\begin{aligned} &E X=-j \varphi^{\prime}(0)=-j \cdot j \frac{1}{\lambda}=\frac{1}{\lambda} \\ &D X=-\varphi^{\prime \prime}(0)+\left(\varphi^{\prime}(0)\right)^{2}=\frac{2}{\lambda^{2}}+\left(j \frac{1}{\lambda}\right)^{2}=\frac{1}{\lambda^{2}} \end{aligned}} EX=jφ(0)=jjλ1=λ1DX=φ(0)+(φ(0))2=λ22+(jλ1)2=λ21

4.9 伽马分布的均值和方差

伽马分布的特征函数为:

φ ( t ) = ( λ λ − j t ) r {\begin{aligned} \varphi(t) &=\left(\frac{\lambda}{\lambda-j t}\right)^{r} \end{aligned}} φ(t)=(λjtλ)r

则:

φ ′ ( 0 ) = j r λ φ ′ ′ ( 0 ) = − r 2 + r λ 2 {\begin{aligned} &\varphi^{\prime}(0)=j \frac{r}{\lambda} \\ &\varphi^{\prime \prime}(0)=-\frac{r^{2}+r}{\lambda^{2}} \end{aligned}} φ(0)=jλrφ(0)=λ2r2+r

因此,其均值和方差为:

E X = − j φ ′ ( 0 ) = − j ⋅ j r λ = r λ D X = − φ ′ ′ ( 0 ) + ( φ ′ ( 0 ) ) 2 = r 2 + r λ 2 + ( j r λ ) 2 = r λ 2 {\begin{aligned} &E X=-j \varphi^{\prime}(0)=-j \cdot j \frac{r}{\lambda}=\frac{r}{\lambda} \\ &D X=-\varphi^{\prime \prime}(0)+\left(\varphi^{\prime}(0)\right)^{2}=\frac{r^{2}+r}{\lambda^{2}}+\left(j \frac{r}{\lambda}\right)^{2}=\frac{r}{\lambda^{2}} \end{aligned}} EX=jφ(0)=jjλr=λrDX=φ(0)+(φ(0))2=λ2r2+r+(jλr)2=λ2r

4.10 拉普拉斯分布的均值和方差

拉普拉斯分布的特征函数为:

φ ( t ) = e j μ t 1 + λ 2 t 2 {\begin{aligned} \varphi(t) &=\frac{e^{j \mu t}}{1+\lambda^{2} t^{2}} \end{aligned}} φ(t)=1+λ2t2ejμt

则:

φ ′ ( 0 ) = j μ φ ′ ′ ( 0 ) = − ( μ 2 + 2 λ 2 ) {\begin{aligned} &\varphi^{\prime}(0)=j \mu \\ &\varphi^{\prime \prime}(0)=-\left(\mu^{2}+2 \lambda^{2}\right) \end{aligned}} φ(0)=jμφ(0)=(μ2+2λ2)

因此,其均值和方差为:

E X = − j φ ′ ( 0 ) = − j ⋅ j μ = μ D X = − φ ′ ′ ( 0 ) + ( φ ′ ( 0 ) ) 2 = μ 2 + 2 λ 2 + ( j μ ) 2 = 2 λ 2 {\begin{aligned} &E X=-j \varphi^{\prime}(0)=-j \cdot j \mu=\mu \\ &D X=-\varphi^{\prime \prime}(0)+\left(\varphi^{\prime}(0)\right)^{2}=\mu^{2}+2 \lambda^{2}+(j \mu)^{2}=2 \lambda^{2} \end{aligned} } EX=jφ(0)=jjμ=μDX=φ(0)+(φ(0))2=μ2+2λ2+(jμ)2=2λ2

  • 5
    点赞
  • 22
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
### 回答1: 随机变量和随机过程是概率论中的重要概念。概率随机变量与随机过程pdf下载是指可供学习者下载的有关这方面知识的教材或资料。概率随机变量是指将样本空间中的一些值映射到实数集上的函数,通常用于描述某个事件发生的可能性。随机过程是一种随时间变化的随机现象,它可以用一系列随机变量来描述。通常我们用概率分布函数或密度函数来描述随机变量的概率性质,用各种统计量来描述其数值特征。而对于随机过程,我们则需要用概率密度函数或谱密度函数、相关函数等方法来描述其时间和频率特征。 概率随机变量与随机过程的应用非常广泛,它们可以用于建模、预测、控制等各种领域。例如,在金融领域中,我们可以用随机过程来描述股票价格的变化,用随机变量来描述某种市场指数的波动情况;在工程领域中,我们可以用随机过程来描述信号、噪声等随时间变化的随机信号,用随机变量来描述某种特定材料的某些物理特性的概率分布。 概率随机变量与随机过程的学习需要一定的数学基础,特别是概率论、数理统计等相关知识。但是,对于工程技术人员和一些实际应用领域的从业者来说,了解概率随机变量与随机过程的基本原理和应用方法非常有必要。因此,对于那些想要深入了解这方面知识的学习者来说,概率随机变量与随机过程pdf下载可能是一种不错的选择。 ### 回答2: 概率随机变量与随机过程是一门重要的随机过程课程,主要研究系列随机变量和随机过程以及它们的性质和应用。在相关行业和领域,如通信、控制、金融、统计学和物理学等方面,这门课程都有着广泛的实际应用。 这本书主要介绍了概率随机变量和随机过程的定义、性质、分类和重要理论和方法。其中,概率随机变量的研究主要涉及离散型随机变量、连续型随机变量、多维随机变量和矢量随机变量。在随机过程方面,涵盖了马尔可夫过程、泊松过程、扩散过程、随机游走、马尔可夫链等知识点,在实际应用中起到了重要的作用。 此外,书中还介绍了概率随机变量和随机过程的特殊应用,如随机信号分析、时间序列分析、蒙特卡洛方法等等。通过本书的学习,读者将能够掌握随机变量和随机过程的基本概念、性质和方法,理解随机现象的内在特性和运行规律,从而能够更好地应用于实际工程和科学领域。 该书的PDF版本免费提供下载,为学习该课程的学生和从事相关领域研究的专业人士提供了非常宝贵的资源和资料。希望读者在学习和研究过程中能够加强理论与实践的结合,积极探索随机现象的规律和应用,为推动相关领域的发展和进步做出贡献。 ### 回答3: 概率随机变量与随机过程是概率论中重要的概念,它们在统计学、工程学、物理学、经济学等领域都有广泛的应用。概率随机变量是一种随机现象,它可以用数值来表示,例如掷骰子的点数、抛硬币的正反面等等。概率随机变量的概率分布可以用概率密度函数或概率分布函数来描述,这些函数可以用于计算随机变量取某一值的概率。 随机过程是一种随机现象,它的值是一个随时间变化的随机变量。例如,股票价格随着时间的推移而变化,这就是一个随机过程。随机过程可以用概率密度函数或概率分布函数来描述,这些函数可以用于计算随机过程在某一时刻的取值的概率。 概率随机变量与随机过程pdf是概率论中的一份资料,它包含了概率随机变量与随机过程的各种特性、定义、性质和应用。下载这份资料可以帮助我们更好地理解和应用概率随机变量与随机过程。在应用中,我们可以利用概率论的知识来分析随机现象的规律,进行预测和决策。因此,对概率随机变量与随机过程的研究和应用具有重要的意义。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值