表示整数的奇怪方法

【题目描述】:

Elina正在读刘汝佳写的一本书,它介绍了一种表达非负整数的奇怪方法。方式如下:

选择k个不同的正整数a1,a2,…,ak。对于一些非负整数m,将它除以每个ai (1<=i<=k)可以得到余数ri。如果a1,a2,…,ak被适当地选择,m被确定,那么这些(ai,ri)对可以用来表示m。

Elina说:“通过m计算ri很容易。”“但是我怎么才能从这些(ai,ri)对中找到m呢?“

由于Elina对编程很陌生,这个问题对她来说太难了。你能帮助她吗?

【输入描述】:

第一行:一个整数k

以下k行:每行两个整数,表示ai和ri(1<=i<=k)。

【输出描述】:

输出一行,表示最小的非负整数m,如果没有解,输出-1。

【样例输入】:

2
8 7
11 9

【样例输出】:

31

【时间限制、数据范围及描述】:

时间:1s 空间:128M

2<=k<=10000;

注意:输入和输出中的所有整数都是非负的,可以用64位整型来表示。

#include<cstdio>
#include<iostream>
using namespace std;
long long n;
long long p[100005],q[100005];
long long exgcd(long long a,long long b,long long &x,long long &y){
if(b==0){
x=1;
y=0; 
return a;
}
long long  d=exgcd(b,a%b,x,y);
long long  t=x;
x=y;
y=t-a/b*y;
return d; 
}
long long solve(){
    long long  i,c,d,x,y,t; 
    for(i=1;i<n;i++) { 
        c=q[i]-q[i-1]; 
        d=exgcd(p[i-1],p[i],x,y); 
        if(c%d!=0){
        return -1;
        }
        t=p[i]/d; 
        x=(x*(c/d)%t+t)%t; 
        q[i]=p[i-1]*x+q[i-1]; 
        p[i]=p[i-1]*(p[i]/d); 
    } 
    return q[n-1];
}
int main(){
freopen("9.in","r",stdin);
freopen("9.out","w",stdout);
scanf("%lld",&n);
for(int i=0;i<n;i++){
scanf("%lld %lld",&p[i],&q[i]);
}
long long m;
m=solve();
printf("%lld",m);
return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值