【题目描述】:
Elina正在读刘汝佳写的一本书,它介绍了一种表达非负整数的奇怪方法。方式如下:
选择k个不同的正整数a1,a2,…,ak。对于一些非负整数m,将它除以每个ai (1<=i<=k)可以得到余数ri。如果a1,a2,…,ak被适当地选择,m被确定,那么这些(ai,ri)对可以用来表示m。
Elina说:“通过m计算ri很容易。”“但是我怎么才能从这些(ai,ri)对中找到m呢?“
由于Elina对编程很陌生,这个问题对她来说太难了。你能帮助她吗?
【输入描述】:
第一行:一个整数k
以下k行:每行两个整数,表示ai和ri(1<=i<=k)。
【输出描述】:
输出一行,表示最小的非负整数m,如果没有解,输出-1。
【样例输入】:
2
8 7
11 9
【样例输出】:
31
【时间限制、数据范围及描述】:
时间:1s 空间:128M
2<=k<=10000;
注意:输入和输出中的所有整数都是非负的,可以用64位整型来表示。
#include<iostream>
using namespace std;
long long n;
long long p[100005],q[100005];
long long exgcd(long long a,long long b,long long &x,long long &y){
if(b==0){
x=1;
y=0;
return a;
}
long long d=exgcd(b,a%b,x,y);
long long t=x;
x=y;
y=t-a/b*y;
return d;
}
long long solve(){
long long i,c,d,x,y,t;
for(i=1;i<n;i++) {
c=q[i]-q[i-1];
d=exgcd(p[i-1],p[i],x,y);
if(c%d!=0){
return -1;
}
t=p[i]/d;
x=(x*(c/d)%t+t)%t;
q[i]=p[i-1]*x+q[i-1];
p[i]=p[i-1]*(p[i]/d);
}
return q[n-1];
}
int main(){
freopen("9.in","r",stdin);
freopen("9.out","w",stdout);
scanf("%lld",&n);
for(int i=0;i<n;i++){
scanf("%lld %lld",&p[i],&q[i]);
}
long long m;
m=solve();
printf("%lld",m);
return 0;
}