矩阵快速幂 例3: 矩阵幂级数

这篇博客介绍了矩阵快速幂算法的实现,并通过一个具体的例3:矩阵幂级数来详细解析该算法的过程。博主首先定义了矩阵乘法函数`mu`,然后实现了矩阵快速幂的`answer`函数,用于计算矩阵的幂次。在`main`函数中,读取输入的矩阵和幂次,最后输出计算结果。矩阵快速幂算法在处理大型矩阵运算时能显著提高效率。
摘要由CSDN通过智能技术生成
#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
#include<cmath>
using namespace std;
int n,k;
int a[4005][4005],b[4005][4005];int c[4005][4005],t[4005][4005];
void mu(int a[][4005],int b[][4005],int n){
memset(c,0,sizeof c);
for(int i=1;i<=2*n;i++){
for(int j=1;j<=2*n;j++){
for(int k=1;k<=2*n;k++){
c[i][j]+=a[i][k]*b[k][j];
c[i][j]%=1000;
}
}
}
for(int i=1;i<=2*n;i++){
for(int j=1;j<=2*n;j++){
    a[i][j]=c[i][j];
    //printf("%d ",a[i][j]);
   }
   //printf("\n");
}     
return;
}
void answer(int a[][4005],int k){
while(k){
if(n&1) mu(a,
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值